Machinedesign 11165 Img 6803

Will 3D-Printing Prepare Hybrid Rocket for Takeoff?

July 28, 2017
3D-printed fuel grains are investigated for their ability to improve the throttling performance of this hybrid rocket engine.

The Defense Advanced Research Projects Agency (DARPA) awards a $542,600 research contract to Rocket Crafters, Inc. (RCI) to design, build, and test a large chemical hybrid rocket engine (HRE). The engine is described as hybrid because its oxidizer is a liquid and its fuel is a solid. These are separated to prevent accidental detonation, as shown in the patent drawing above. 

HREs are eyed for their ability to be throttled, stopped, and restarted during flight—albeit, not as reliably as liquid rockets. Therefore, under the DARPA agreement, RCI will design, build, and throttle-test a flight-capable rocket motor with controllable throttling performance and lower vibrations than existing hybrid designs.

The rocket's fuel grains will be specially tailored through 3D printing to burn predictably and improve rocket performance. RCI will use its patented Direct-Digital Advanced Rocket Technology (D-DART) to 3D print near-uniform fuel grains made of the company’s high-energy polymer/additive formula. The D-DART fuel grains will be used as the engine’s fuel source, as well as in the engine combustor.

Already, RCI’s initial test series achieved thrust profiles with 97.5% consistency without signs of combustion instability or vibration—a level of performance that is a first for hybrid rocket engines. In its next prototype, RCI aims to achieve 5,000 lbf of peak thrust in its HRE prototype with controllable throttling and lower levels of vibration.

RCI will continue to work with researchers from the Florida Institute of Technology to research solid-fuel formulations and oxidizer/fuel mixtures that will be optimal in its HRE. Testing will be conducted at Florida's Space Coast using a custom static test oxidizer system mounted onto a new hybrid rocket test stand.Testing is expected to verify the hybrid rocket engine's reliability and consistency, as well as its throttling and emergency engine-shutdown capabilities.

Sponsored Recommendations

The Digital Thread: End-to-End Data-Driven Manufacturing

May 1, 2024
Creating a Digital Thread by harnessing end-to-end manufacturing data is providing unprecedented opportunities to create efficiencies in the world of manufacturing.

Medical Device Manufacturing and Biocompatible Materials

May 1, 2024
Learn about the critical importance of biocompatible materials in medical device manufacturing, emphasizing the stringent regulations and complex considerations involved in ensuring...

VICIS Case Study

May 1, 2024
The team at VICIS turned to SyBridge and Carbon in order to design and manufacture protective helmet pads, leveraging the digitization and customization expertise of Toolkit3D...

What's Next for Additive Manufacturing?

May 1, 2024
From larger, faster 3D printers to more sustainable materials, discover several of the top additive manufacturing trends for 2023 and beyond.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!