Osman El Atwani (left) and Enrique Martinez Saez examine the new tungsten alloy using a transmission electron microscope.

New Tungsten Alloy Defies Radiation

April 4, 2019
A strong resilient alloy of tungsten survives tremendous heat and radiation, making it a good candidate for fusion reactors.

Material engineers at Los Alamos National Laboratory have developed a tungsten-based alloy that can withstand unprecedented amounts of radiation without damage. This would make it an ideal choice for the interiors of magnetic fusion reactors. Materials previously explored for this purpose fracture too easily under similar conditions, but this new alloy seems to defeat that problem as well. Still, the team continues to investigate the material’s mechanical properties under different stress levels and responses to plasma exposure.

“This material showed outstanding radiation resistance when compared to pure nanocrystalline tungsten materials and other conventional alloys,” says Osman El Atwani, the principal investigator.

“But it seems we developed a material with unprecedented radiation resistance,” says Enrique Martinez Saez, another Los Alamos researcher. “We have never seen before a material that withstand the level of radiation damage we have observed for this high-entropy alloy. It seems to retain outstanding mechanical properties after irradiation, as opposed to traditional counterparts, in which the mechanical properties degrade easily under irradiation.” (High-entropy alloys contain four or more principal elements.)

The research team used atom-probe tomography to discover that, at the atomic level, the alloy contained layers of different elements which changed to nanoclusters when subjected to radiation. The scientist say this helped them understand why this alloy tolerates so much highly radiation.

The material, created as a thin film, is a quaternary nanocrystalline tungsten-tantalum-vanadium-chromium alloy that has been characterized under extreme thermal conditions and after irradiation.

The team hasn’t tested its corrosion resistance yet, but they anticipate it should perform well there also. Then, if it is shown to be ductile (as is also expected), it could be made into turbines because it is a refractory, high-melting-point material.

Sponsored Recommendations

MOVI-C Unleashed: Your One-Stop Shop for Automation Tasks

April 17, 2024
Discover the versatility of SEW-EURODRIVE's MOVI-C modular automation system, designed to streamline motion control challenges across diverse applications.

The Power of Automation Made Easy

April 17, 2024
Automation Made Easy is more than a slogan; it signifies a shift towards smarter, more efficient operations where technology takes on the heavy lifting.

Lubricants: Unlocking Peak Performance in your Gearmotor

April 17, 2024
Understanding the role of lubricants, how to select them, and the importance of maintenance can significantly impact your gearmotor's performance and lifespan.

From concept to consumption: Optimizing success in food and beverage

April 9, 2024
Identifying opportunities and solutions for plant floor optimization has never been easier. Download our visual guide to quickly and efficiently pinpoint areas for operational...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!