A Carbon Nanotube-Based FET Detects and Quantifies Infectious Fungus

Feb. 3, 2010
A carbon nanotube-based FET detects and quantifies infectious fungus.
Univerisitat Rovira i Virgili, www.urv.es

Researchers at the Univerisitat Rovira i Virgili, the public university of Tarragonna in Spain, have designed a field-effect transistor made partially from carbon nanotubes. The transistor can selectively detect and quantify the amount of infectious fungus cells (Candida albicans) in a sample of blood or mucous secretion. When Candida antibodies and a sample are placed on the FET, interactions between the fungus cells and antibodies change the device’s electric current. This let researchers detect the fungus and estimate accurately how much of it is present. The new biosensor will help detect fungus infections using small blood samples and could lead to other infection-specific sensors.

Sponsored Recommendations

How to Build Better Robotics with Integrated Actuators

July 17, 2024
Reese Abouelnasr, a Mechatronics Engineer with Harmonic Drive, answers a few questions about the latest developments in actuators and the design or engineering challenges these...

Crisis averted: How our AI-powered services helped prevent a factory fire

July 10, 2024
Discover how Schneider Electric's services helped a food and beverage manufacturer avoid a factory fire with AI-powered analytics.

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!