Machinedesign 12475 20170616 Mercier Sensor 9403 8mp 900

Low-Power Temperature Sensors Bring the Heat

Oct. 8, 2017
The sensors replace traditional thermistors with two gate-tunneling transistors, one of which has temperature-dependent intrinsic properties and the other remaining constant.

A low-power temperature sensor currently under development at the University of San Diego might lead to sleeker temperature-sensing devices and designs used in wearables, diagnostic sensors for the industrial Internet of Things, and healthcare. The sensors would eliminate the need for bulky power supplies like batteries, and last years without having to be recharged.

The technology, still in its research phase, takes advantage of a phenomenon called the quantum tunneling effect, which allows very small quantities of electrons to leak through potential barriers in ultra-thin transistors. Though very small, this leakage current is enough to charge two capacitors at reference and temperature-dependent rates, as enabled by the one transistor's temperature-dependent intrinsic properties. It uses two gate-leakage metal-oxide semiconductor transistors (MOSFETs).

One tradeoff of the low-power design is the relatively low response time of up to 1 temperature reading per second. The team is still developing their technology to address its limitations, but for now, it stands out as pretty impressive. Pictured above, it was integrated onto a very small silicon chip no larger than 0.15 square millimeters.

A further explanation of the research can be read in the paper, “Near-Zero-Power Temperature Sensing via Tunneling Channels Through Complementary Metal-Oxide-Semiconductor Transistors” by Hui Wang and Patrick P. Mercier, published in the journal, Nature.

Sponsored Recommendations

The Digital Thread: End-to-End Data-Driven Manufacturing

May 1, 2024
Creating a Digital Thread by harnessing end-to-end manufacturing data is providing unprecedented opportunities to create efficiencies in the world of manufacturing.

Medical Device Manufacturing and Biocompatible Materials

May 1, 2024
Learn about the critical importance of biocompatible materials in medical device manufacturing, emphasizing the stringent regulations and complex considerations involved in ensuring...

VICIS Case Study

May 1, 2024
The team at VICIS turned to SyBridge and Carbon in order to design and manufacture protective helmet pads, leveraging the digitization and customization expertise of Toolkit3D...

What's Next for Additive Manufacturing?

May 1, 2024
From larger, faster 3D printers to more sustainable materials, discover several of the top additive manufacturing trends for 2023 and beyond.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!