Iron-Based Superalloys

Nov. 15, 2002
Iron, nickel, and cobalt-based alloys used primarily for high-temperature applications are known as superalloys.

Iron, nickel, and cobalt-based alloys used primarily for high-temperature applications are known as superalloys. The iron-based grades, which are less expensive than cobalt or nickel-based grades, are of three types: alloys that can be strengthened by a martensitic type of transformation, alloys that are austenitic and are strengthened by a sequence of hot and cold working (usually, forging at 2,000 to 2,100°F followed by finishing at 1,200 to 1,600°F), and austenitic alloys strengthened by precipitation hardening.

Some metallurgists consider the last group only as superalloys, the others being categorized as high-temperature, high-strength alloys. In general, the martensitic types are used at temperatures below 1,000°F; the austenitic types, above 1,000°F.

The AISI 600 series of superalloys consists of six subclasses of iron-based alloys:

  • 601 through 604: Martensitic low-alloy steels.
  • 610 through 613: Martensitic secondary hardening steels.
  • 614 through 619: Martensitic chromium steels.
  • 630 through 635: Semiaustenitic and martensitic precipitation-hardening stainless steels.
  • 650 through 653: Austenitic steels strengthened by hot/cold work.
  • 660 through 665: Austenitic superalloys; all grades except alloy 661 are strengthened by second-phase precipitation.

Iron-based superalloys are characterized by high temperature as well as room-temperature strength and resistance to creep, oxidation, corrosion, and wear. Wear resistance increases with carbon content. Maximum wear resistance is obtained in alloys 611, 612, and 613, which are used in high-temperature aircraft bearings and machinery parts subjected to sliding contact. Oxidation resistance increases with chromium content. The martensitic chromium steels, particularly alloy 616, are used for steam-turbine blades.

The superalloys are available in all conventional mill forms -- billet, bar, sheet, and forgings -- and special shapes are available for most alloys. In general, austenitic alloys are more difficult to machine than martensitic types, which machine best in the annealed condition. Austenitic alloys are usually "gummy" in the solution-treated condition and machine best after being partially aged or fully hardened.

Crack sensitivity makes most of the martensitic steels difficult to weld by conventional methods. These alloys should be annealed or tempered prior to welding; even then, preheating and postheating are recommended. Welding drastically lowers the mechanical properties of alloys that depend on hot/cold work for strength.

All of the martensitic low-alloy steels machine satisfactorily and are readily fabricated by hot working and cold working. The martensitic secondary-hardening and chromium alloys are all hot worked by preheating and hot forging. Austenitic alloys are more difficult to forge than the martensitic grades.

Sponsored Recommendations

From concept to consumption: Optimizing success in food and beverage

April 9, 2024
Identifying opportunities and solutions for plant floor optimization has never been easier. Download our visual guide to quickly and efficiently pinpoint areas for operational...

A closer look at modern design considerations for food and beverage

April 9, 2024
With new and changing safety and hygiene regulations at top of mind, its easy to understand how other crucial aspects of machine design can get pushed aside. Our whitepaper explores...

Cybersecurity and the Medical Manufacturing Industry

April 9, 2024
Learn about medical manufacturing cybersecurity risks, costs, and threats as well as effective cybersecurity strategies and essential solutions.

Condition Monitoring for Energy and Utilities Assets

April 9, 2024
Condition monitoring is an essential element of asset management in the energy and utilities industry. The American oil and gas, water and wastewater, and electrical grid sectors...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!