Sensor Sense: Avoid collision damage with long-range sensors

March 9, 2006
Inductive proximity sensors typically mount so the objects they detect approach within 40 to 80% of the sensor target range.

— Robert Repas, Associate Editor

Extended-range proximity sensors provide up to 3x the distance in sensing range over standard sensors. The longer distance reduces the possibility of collision damage by mounting the sensor further away from the moving target.


This range usually allows for all accumulated manufacturing and application tolerances. The sensing distances for standard cylindrical-type inductive sensors range from 0.8 to 15 mm. Thus, actual separation between the sensor and target is typically less than 12 mm — often significantly less.

Sensors positioned close to their moving targets are far more likely to suffer damage from physical contact. With machinery and equipment becoming increasingly compact, there isn't always room for additional mounting brackets or assemblies to properly hold sensors in position. A sensor that shifts or vibrates in position is more prone to collision damage. In this instance, many users prefer to use "extended-range" sensors to reduce the possibility of damage.

Extended-range sensors offer up to three times the range of standard inductive proximity sensors for the same-size housing. The longer sensing range reduces the likelihood of target-to-sensor collisions simply because the sensor mounts farther away from the moving target. Engineered for flexibility, extended-range sensors come in virtually all industry-standard housings and operating styles.

Extended-range sensors also help if the target is a nonferrous material such as aluminum or brass. When the correction factor for nonferrous metals is applied to extended-range sensors, the sensor ends up spaced almost a "normal" distance away from the target.

Pepperl+Fuchs (am.pepperlfuchs.com) provided information for this column.

Sponsored Recommendations

Aug. 22, 2025
Discover how to meet growing customer demands for custom products without overextending your engineering team. Learn how scaling your automation strategy can help you win more...
Aug. 22, 2025
Join industry leaders to explore how cutting edge digital technologies are transforming factories. Learn how to boost throughput, enhance flexibility, and accelerate your digital...
Aug. 22, 2025
Explore the future of manufacturing. Learn how to leverage the latest digital technologies and strategies to build a more efficient, agile, and resilient digital factory.
Aug. 21, 2025
A look into the latest improvements in motion control through high-performance drives, AI enhancements, and faster communication protocols.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!