Scoping dopants in superconductors

Oct. 6, 2005
Dopant atoms in superconductors attract electrons and leave the positively charged gaps that permit current flow without electrical resistance.

Dopants may also create electronic disorder at the atomic level. But to date, no one could resolve the atomic structure to confirm the correlation.

Now, a Cornell University team, using a scanning tunneling microscope, has mapped current flow in cuprate superconductor samples doped with different amounts of oxygen atoms. It turns out when dopant atoms are far away from the conducting plane, electron waves are homogeneous and the material superconducts. But the waves become heterogeneous and superconductivity ceases when dopant atoms sit near the conducting plane.

Molecular structure and how dopant atoms affect current flow in their immediate vicinity is key to understanding superconductor behavior say researchers. The stakes are high. Experts predict the worldwide market for superconductors will reach $5 billion by the year 2010.

Sponsored Recommendations

Flexible Power and Energy Systems for the Evolving Factory

Aug. 29, 2024
Exploring industrial drives, power supplies, and energy solutions to reduce peak power usage and installation costs, & to promote overall system efficiency

Advancing Automation with Linear Motors and Electric Cylinders

Aug. 28, 2024
With SEW‑EURODRIVE, you get first-class linear motors for applications that require direct translational movement.

Gear Up for the Toughest Jobs!

Aug. 28, 2024
Check out SEW-EURODRIVEs heavy-duty gear units, built to power through mining, cement, and steel challenges with ease!

Flexible Gear Unit Solutions for Tough Requirements

Aug. 28, 2024
Special gear units to customer-specific requirements – thanks to its international production facilities, SEW-EURODRIVE can also build special gear units to meet customer needs...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!