Uncertainty Principle's "big" test

Oct. 26, 2006
A well-known quantum-mechanical theory called the Heisenberg Uncertainty Principle limits the precision of simultaneous position and velocity measurements of a particle at ever-smaller scales.

A scanning electron microscope image of an aluminum and silicon nitride resonator coupled to a superconducting single electron transistor (SSET).


Now, a resonator circuit from researchers at Cornell University closely approaches this theoretical limit, but on an unprecedented large scale.

The resonator consists of an 8.7- m long X 200-nm wide sliver of aluminum, equivalent to roughly 10,000 billion atoms, vastly larger than the elementary particles about which Heisenberg theorized. The sliver rigidly mounts at both ends on a silicon-nitride substrate while the middle is free to vibrate. Positioned nearby is a superconducting single-electron transistor (SSET) that detects sliver vibration.

As postulated by Heisenberg, just the act of observing resonator vibration with the SSET charges the vibrational qualities of the resonator, a phenomenon called quantum back action. Further, the application of certain voltages lowers device temperature through a mechanism akin to optical or Doppler cooling, a process by which red laser light cools atomic vapor. This is the first time the phenomenon has been observed in condensed matter, however.

The group is also attempting to quantify the size of the superposition principle envelope. The superposition principle supposes that a particle can simultaneously exist in two places. The goal, say researchers, is to observe superposition in particles, then scale up to larger devices until the theory breaks down. Potential applications for the research include quantum computing and cooling.

Sponsored Recommendations

How to Build Better Robotics with Integrated Actuators

July 17, 2024
Reese Abouelnasr, a Mechatronics Engineer with Harmonic Drive, answers a few questions about the latest developments in actuators and the design or engineering challenges these...

Crisis averted: How our AI-powered services helped prevent a factory fire

July 10, 2024
Discover how Schneider Electric's services helped a food and beverage manufacturer avoid a factory fire with AI-powered analytics.

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!