Software tunes up microwave weapon

Feb. 5, 2004
Scientists at Sara Inc. have developed a weapon system that transmits microwaves at power levels reaching 100 MW.




The HPM antenna, still in development, consists of two reflecting surfaces, a feed-horn, and resonant window (bottom). It radiates microwave pulses that disrupt electronics to disable vehicles and weapons.
 
The Femlab model of the waveguide shows the horn and window. Driving the horn and window at an off-resonant frequency produces standing waves in the long waveguide. Simulations run on a 1.7-GHz P4-based computer with 1 Gbyte of RAM. The model has 89,000 elements and 115,000 degrees of freedom.
 
A comparison of the measured and modeled values for the voltage standing wave ratio on the HPM antenna shows a good fit. Researchers are confident they can successfully model other window geometries.

Scientists at Sara Inc., Cypress, Calif. (www.sara.com), have developed a weapon system that transmits microwaves at power levels reaching 100 MW. They hope the system will be able to disrupt electronic circuits it's aimed at, thereby disabling other weapons, vehicles, and communications systems. The system transmits only short pulses of microwave energy and, thus, should leave humans unaffected. The development team is using Femlab, a physics-modeling package from Comsol Inc., Burlington, Mass. (www.comsol.com), to simulate the antenna's operation.

Robert Koslover, a senior scientist at Sara Inc., says simulations with a finite-difference time-domain method (FDTD) did not produce good agreement between simulation and experimental results. In addition, all elements or cells in the FDTD method must be the same size. So if one area needs a fine mesh, the whole model must use the same density. This means more computer RAM and computation time.

The finite-element method, however, allows using a fine mesh for increased accuracy in key areas and a coarser mesh elsewhere. This lets a desktop computer perform simulations in less time than other methods. Femlab results have produced a closer match with experimental data, adds Koslover. The software also let him try various shapes and sizes for a window on the feed horn to find the lowest voltage standing-wave ratio (VSWR), an indicator of how much energy is reflected back into the horn. A perfect VSWR is 1:1. The Sara design has 1.2:1, a ratio Koslover considers quite good.

The window helps eliminate arcing by letting engineers either evacuate the horn or fill it with a gas that slows the electrons. The window must also let microwave energy pass with minimal attenuation and distortion.

-- Paul Dvorak

Sponsored Recommendations

Sept. 16, 2025
From robotic arms to high-speed conveyors, accuracy matters. Discover how encoders transform motor control by turning motion into real-time datadelivering tighter speed control...
Sept. 16, 2025
Keep high-torque gearboxes running efficiently with external lubrication and cooling systems delivered fast. Flexible configurations, sensor-ready monitoring, and stocked options...
Sept. 16, 2025
Now assembled in the U.S., compact P2.e planetary gear units combine maximum torque, thermal efficiency, and flexible configurations for heavy-duty applicationsavailable faster...
Aug. 22, 2025
Discover how to meet growing customer demands for custom products without overextending your engineering team. Learn how scaling your automation strategy can help you win more...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!