More juice from flexible solar cells

Oct. 12, 2006
Breakthroughs in materials science and plasma chemistry could boost the output of thin, flexible solar cells by 50%, says Iowa State University researcher Vikram Dalal. Dalal is working with PowerFilm Inc., Ames, Iowa, a maker of the devices.

Iowa State University researcher, Vikram Dalal in his lab.


Breakthroughs in materials science and plasma chemistry could boost the output of thin, flexible solar cells by 50%, says Iowa State University researcher Vikram Dalal. Dalal is working with PowerFilm Inc., Ames, Iowa, a maker of the devices.

Flexible solar cells mount noncrystalline silicon wafers about 2 m thick onto flexible plastic and other materials. But the thin cells produce about half the power of cells made from thicker crystalline silicon. And performance drops by about another 15 to 20% over time.

"That's where we come in," Dalal says. Though details are proprietary, the work involves improving hydrogen bonding to the silicon. That can boost performance of the cells by about 35% and eliminate some 15% of the performance drop. Best of all, the new techniques should work with existing manufacturing processes and equipment.

Sponsored Recommendations

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

MONITORING RELAYS — TYPES AND APPLICATIONS

May 15, 2024
Production equipment is expensive and needs to be protected against input abnormalities such as voltage, current, frequency, and phase to stay online and in operation for the ...

Solenoid Valve Mechanics: Understanding Force Balance Equations

May 13, 2024
When evaluating a solenoid valve for a particular application, it is important to ensure that the valve can both remain in state and transition between its de-energized and fully...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!