Purdue researchers say most suspensions "overengineered"

Jan. 12, 2006
Engineers at Purdue University have found a new method for analyzing automotive-suspension components that could improve performance, reduce weight, and increase the durability of the systems.

Muhammad Haroon, a Purdue mechanical-engineering doctoral student, works on sensors installed in a car-suspension system at the university's Ray W. Herrick Laboratories.


The researchers claim their method shows precisely how damage changes a part's performance and how that change affects other parts in the suspension.

"Different component suppliers design their parts to be as rugged as possible," says Douglas E. Adams, an associate professor of mechanical engineering, who leads the research. "The problem with this approach is that some parts are overengineered and heavier than they need to be, resulting in systems that didn't handle very well, and higher fuel and steel consumption."

Now, automakers can test the entire suspension by analyzing parts as interconnected components. This integrated approach is important because a damaged part can cause strain on other parts. If engineers know which parts are prone to damage, they can make them heavier while making other parts lighter.

The method developed at Purdue senses naturally occurring vibration patterns to detect damage. Triaxial accelerometers collect data as vibration passes through the suspension components. Software programs then interpret the information to analyze each part's performance.

Such "fault-identification" methods not only provide information for designing better suspensions but could also be used for future structural-healthmonitoring systems that automatically detect damaged parts. Researchers hope to develop the method in less than two years.

ArvinMeritor Inc., which makes suspension components at its Columbus, Ind., plant, funds the research.

Sponsored Recommendations

How to Build Better Robotics with Integrated Actuators

July 17, 2024
Reese Abouelnasr, a Mechatronics Engineer with Harmonic Drive, answers a few questions about the latest developments in actuators and the design or engineering challenges these...

Crisis averted: How our AI-powered services helped prevent a factory fire

July 10, 2024
Discover how Schneider Electric's services helped a food and beverage manufacturer avoid a factory fire with AI-powered analytics.

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!