Pressure Sensors Captivate Kids and Let Engineers Design Better Products

July 7, 2010
Pressure sensors in a portable museum get kids interested in science and technology. The same sensors are used by product developers to fine-tune ergonomics and strength requirements

Resources:
Sensor Products Inc.
, www.sensorprod.com

The Leonardo, www.theleonardo.org

The Leonardo Museum, Salt Lake City, a science, technology, and art center, is engaging students’ bodies as well as their minds with a portable surface-pressure-body-mapping exhibit. In the “Under Pressure” exhibit, visitors sit on a pressure pad and see how contact between the body and an object can create pressure points and strain.

The exhibit, designed by Joe Andrade, professor of bioengineering at the University of Utah, is traveling to schools and libraries until the museum opens permanently next April. The exhibit uses a Tactilus Body Mapping Pressure System, donated by Sensor Products Inc., Madison, N.J. The Society of Plastics Engineers and the Utah Science Center fund the traveling kiosk.

“The kids and adults really love the exhibit,” says Andrade. “They chuckle and can’t wait to sit on the pressure pad to see their body maps. Meanwhile, they are learning about science and technology.”

In pressure-body mapping, sensors measure the forces exerted by a body on a surface and convert the data into color-coded pressure maps of the contact surface. Designers use the information to modify products for more even pressure distributions.

Reducing high-pressure areas makes products more comfortable, ergonomic, and efficient. The technology has been used to customize mattresses for different body types, make plastic tubes and bottles easier to squeeze, and correct golfers’ stances and swings.

Pressure-body mapping can also trim production cost. A major toothpaste manufacturer, for example, used Tactilus to more-closely pinpoint the forces customers apply when dispensing toothpaste. Focus group members tested prototype packaging by squeezing all the toothpaste out of a tube. Tactilus measured the squeeze pressure along the tube, including the forces involved in rolling the tube up to extract the last few dabs of toothpaste.

The tests gave designers the first quantitative measure of squeezing effort. Using the data, the company found a less-costly packaging material that still performs to consumer expectations.

© 2010 Penton Media, Inc.

About the Author

Jessica Shapiro

Jessica serves as Associate Editor - 3 years service, M.S. Mechanical Engineering, Drexel University.

Work experience: Materials engineer, The Boeing Company; Primary editor for mechanical and fastening & joining.

Sponsored Recommendations

Sept. 16, 2025
From robotic arms to high-speed conveyors, accuracy matters. Discover how encoders transform motor control by turning motion into real-time datadelivering tighter speed control...
Sept. 16, 2025
Keep high-torque gearboxes running efficiently with external lubrication and cooling systems delivered fast. Flexible configurations, sensor-ready monitoring, and stocked options...
Sept. 16, 2025
Now assembled in the U.S., compact P2.e planetary gear units combine maximum torque, thermal efficiency, and flexible configurations for heavy-duty applicationsavailable faster...
Sept. 16, 2025
Safety in automation goes beyond fences and emergency stops. Learn how functional safety actively monitors and controls motiondelivering smarter protection, greater flexibility...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!