Nanotube transistors fit for space

Nov. 6, 2012
Researchers at the U.S. Navy Research Laboratory in Washington, D.C., are designing single-walled carbon nanotube-based transistors (SWCNT) that are protected against the ionizing radiation found in outer space and the Van Allen Belt

Resources:
U.S. Navy Research Lab

Researchers at the U. S. Navy Research Laboratory in Washington, D.C., are designing single-walled carbon nanotube-based transistors (SWCNT) that are protected against the ionizing radiation found in outer space and the Van Allen Belt, a ring of charged particles circling Earth. This radiation can degrade ICs, interfere with their proper operation, and lead to premature failures.

Radiation affecting ICs takes two forms. In one, an ionizing particle makes a direct hit on the transistor, which can corrupt data and signals. But the chances of such a hit on a SWCNT is small due to their tiny size, low density, and inherent isolation from other SWCNTs in a device, according to Navy scientists. The other form results from the cumulative effect of charges trapped in electronic devices’ oxides, including the gate oxide and those that isolate adjacent devices. These trapped charges shift the voltage needed to turn the transistor on or off, which leads to power leaks and eventual failure of the entire circuit.

To prevent charges from accumulating, researchers built a SWCNT with a thin gate oxide layer made of silicon oxynitride. This hardened dielectric material keeps out stray charged particles.

Making SWCNT “spaceproof” means future circuitry on spacecraft will have less redundancy and error-correction circuity than today’s spacebound ICs and electronic equipment. This would reduce costs and power consumption while improving performance, even if SWCNTs operate at the same speed as present day circuits.

© 2012 Penton Media, Inc.

Sponsored Recommendations

Drive systems for urban air mobility

March 18, 2025
The shift of some of our transport traffic from the road to the air through urban air mobility is one of the most exciting future fields in the aerospace industry.

Blazing the trail for flying robots

March 18, 2025
Eight Bachelor students built a flying manipulator that can hover in any orientation and grasp objects. The drone is even more maneuverable than a quadrocopter and was designed...

Reachy 2: The Open-Source Humanoid Robot Redefining Human-Machine Interaction

March 18, 2025
Reachy 2 was designed to adapt to a wide variety of uses thanks to its modular architecture.

maxon IDX: The plug-and-play solution

March 18, 2025
IDX drives combine power with small space requirements - a brushless BLDC motor combined with an EPOS4 positioning controller and a gearhead inside a high-quality industrial housing...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!