Artist's rendition of a SEP spacecraft expected to launch within the next ten years. Photo courtesy of NASA

Solar-Powered Rocket Ships Look to Revolutionize Space Travel

April 21, 2015
Solar panels are looking good on rooftops, but NASA will soon use the renewable resource to power rocket ships.

Within the next decade, NASA's Glenn Research Center expects to launch a low-fuel, lightweight, solar-powered spaceship. Solar Electric Propulsion (SEP) is paving the way for new efficient technologies, and being used in missions that may facilitate outer-space inhabitance. It’s anticipated that the renewable-source ships will expedite future deliveries to space stations, and possibly turn our solar system into an expansive highway, or even an interworking residency.

The new SEP ship electric propulsion system is expected to cut the weight of a spaceship in half, meaning more liftoffs at a lower price, and greater fuel economy. After liftoff, the SEP ships will use ten times less propellant than contemporary chemical propulsion systems.

Thin, lightweight, and with high surface area and strength, the foldable solar-panel sheets will expand like paper fans, or roll out like carpets for sun exposure after liftoff. They will capture photonic energy from the sun and use it to create electron flow over the semiconductors in the photovoltaic cells. The new solar-power technology can decrease the weight by half and cut space used by energy-storage components by 75%.

The ships will incorporate Hall Thruster engines, where flowing electrons will be “caught” in a magnetic field. These electrons are then used to ionize xenon, a gaseous propellant in the thrusters.

Watch a video on Hall Thrusters, courtesy of Engineering TV, below:

Xenon is an inert (stable, or non-reactive) noble gas with a large atomic radius. Because its electrons are not held in close to the nucleus, it requires low energy to remove an electron from Xenon’s valence shell (i.e., it has low ionization energy). This ionization causes xenon to flow out from the ship’s exhaust as plasma, propelling the ions at speeds of up to 65,000 mph.

Sponsored Recommendations

The Digital Thread: End-to-End Data-Driven Manufacturing

May 1, 2024
Creating a Digital Thread by harnessing end-to-end manufacturing data is providing unprecedented opportunities to create efficiencies in the world of manufacturing.

Medical Device Manufacturing and Biocompatible Materials

May 1, 2024
Learn about the critical importance of biocompatible materials in medical device manufacturing, emphasizing the stringent regulations and complex considerations involved in ensuring...

VICIS Case Study

May 1, 2024
The team at VICIS turned to SyBridge and Carbon in order to design and manufacture protective helmet pads, leveraging the digitization and customization expertise of Toolkit3D...

What's Next for Additive Manufacturing?

May 1, 2024
From larger, faster 3D printers to more sustainable materials, discover several of the top additive manufacturing trends for 2023 and beyond.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!