Machinedesign 7288 Diagram Promo 0

Fluorescent Proteins Stimulate Action-Potential Mapping between Neurons

Jan. 7, 2016
The protein biosensors were tested in the brains of mice and implemented in the cells through the use of a virus. A surprising characteristic of the technique was its ability to read voltage drops generated by different sub-compartments of neurons such as individual dendrites.

A novel brain-function monitoring technique developed by researchers at the Department of Biomedical Engineering at Duke records action potentials during brain activity. The method involves genetically altered proteins that bind to receptors in brain cells. When coupled with fluorescent proteins to amplify their response, these biosensors react to action potentials with a temporal resolution of 0.2 ms, fast enough to generate a precise picture of the intricate signals generated across neurons during brain functions in mammals.

The sensing proteins are obtained from algae and coupled with fluorescent proteins that amplify their response to action potentials with a minuscule lag time. In the presence of an action potential, the sensing protein absorbs some of the energy released by the fluorescent protein. In turn, when action potentials fire across neurons, a reduction in fluorescence is recorded to accurately depict the magnitude of action potentials across neurons.

Voltage propagates through a fly's olfactory neuron, starting in the cell body and propagating leftward through the periphery of the neuron. Masked regions at the soma (blue) and neuron process (gold, magenta), show temporally offset voltage activity (right).

The biosensors were tested in the brains of mice and implemented in the cells through the use of a virus. They were also tested in fruit flies. A surprising characteristic of the technique was its ability to read voltage drops generated by different sub-compartments of neurons such as individual dendrites. The study also recorded the features of voltage propagation between neurons. The research team expects this technique to be highly useful in coding algorithms for different brain functions.  

The report, “High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor,” was published in Science Express on November 20, 2015. (DOI: 10.1126/science.aab0810)

Sponsored Recommendations

High Pressue, High Temperature Pump

April 29, 2024
This innovative axial piston design eliminates the use of elastomers, increases resistance to contamination, and dramatically improves reliability. They can generate up to 10,...

MOVI-C Unleashed: Your One-Stop Shop for Automation Tasks

April 17, 2024
Discover the versatility of SEW-EURODRIVE's MOVI-C modular automation system, designed to streamline motion control challenges across diverse applications.

A Comprehensive Guide for Automation Success

April 17, 2024
Gain insight into the benefits that SEW-EURODRIVE's streamlined automation processes offer to industries involved in machine automation and factory operations.

Navigating the World of Gearmotors and Electronic Drives

April 17, 2024
Selecting a gearmotor doesn’t have to be a traumatic experience. The key to success lies in asking a logical sequence of thoughtful questions.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!