Xometry's WIll it Vibe? screenshot

Which 3D Printing Methods Vibe?

May 11, 2020
FDM-, SLS-, SLA-, HP Multi Jet Fusion- and Carbon DLS-printed parts are put to a vibration test to mimic real-world applications.

Xometry’s “Will It?” engineering challenge video series puts 3D-printed parts to the test. One of the company’s videos, “Will It Vibe?” is inspired by real-world situations in which parts may undergo continuous stress, such as during transportation by car or plane.

Xometry’s Director of Application Engineering Greg Paulsen subjected nine 3D-printed test samples to continuous back-and-forth movements, which is simulated by an off-the-shelf reciprocating saw.

The question that Paulsen wanted to answer was: Can these 3D printed parts withstand sustained, repetitive motion?

Test Parameters

All printed parts were printed using fused deposition modeling (FDM), selective laser sintering (SLS), HP Multi Jet Fusion (HP MJF), stereolithography (SLA) and Carbon DLS. The parts were the ASTM test sample standard size of 4 × 0.75 x 0.08 in. and underwent the same conditions. Among these:

  • The saw’s rate of reciprocation was based on 50% power to the saw (half trigger pull)
  • The jig held the saw blade and allowed the 3D-printed sample part to attach perpendicular to the saw motion
  • The test sample had a metal bolt mounted to the top to add weight and intensify oscillation during the short test timeframe


Paulsen found that three test samples failed: FDM ASA, Carbon DLS EPX and SLA Accura 60. During the experimental debrief, he attributed the failure of these parts to the mechanical characteristics of each individual material, as well as the process by which it was 3D printed.

Thermoplastics typically exhibit higher flexibility and ductility, which why the laser sintered parts (HP Multi Jet Fusion and SLS) passed the test. These parts have fairly uniform, or isotropic, mechanical properties from the laser sintering printing process. The failed thermoplastic (FDM ASA) likely failed at the filament level, which ultimately worked across the part, causing it to snap in two.

The thermosets used in the test were the Carbon DLS and SLA materials. SLA materials are typically known for being brittle, which resulted in Accura 60’s failure to withstand vibration because it had a brittle profile similar to polycarbonate. While Carbon DLS materials all exhibited durable isotropic properties, these engineered resins range widely in characteristics. The EPX thermoset failed because it is known to be a stiff material with low flexibility.

Xometry is looking for its next engineering challenge—submit a request and see if yours gets picked.

Serena Ngoh is a senior marketing specialist for Xometry.

Sponsored Recommendations

How BASF turns data into savings

May 7, 2024
BASF continuously monitors the health of 63 substation assets — with Schneider’s Service Bureau and EcoStruxure™ Asset Advisor. ►Learn More: https://www.schn...

Agile design thinking: A key to operation-level digital transformation acceleration

May 7, 2024
Digital transformation, aided by agile design thinking, can reduce obstacles to change. Learn about 3 steps that can guide success.

Can new digital medium voltage circuit breakers help facilities reduce their carbon footprint?

May 7, 2024
Find out how facility managers can easily monitor energy usage to create a sustainable, decarbonized environment using digital MV circuit breakers.

The Digital Thread: End-to-End Data-Driven Manufacturing

May 1, 2024
Creating a Digital Thread by harnessing end-to-end manufacturing data is providing unprecedented opportunities to create efficiencies in the world of manufacturing.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!