A 3D printed intake manifold for a DeltaWing race car was made out of Windform XT 20 in order to simplify manufacturing and decrease the weight of the automobile all while withstanding high temperatures and pressures of the gearbox oil

3D-Printing Material Lightens Racecar Load

April 1, 2015
“How can we make this racecar fast, while using less power to move it?” A DeltaWing team found answers by tapping into a new resource.

To improve the DeltaWing racecar’s power efficiency during acceleration and turns, Ben Bowlby and his team of engineers felt the best solution was to decrease the car’s weight. Thus, they decided to replace internal components with lightweight, high-performance 3D-printed parts. Not only did it lower the weight, but it improved the vehicle’s structure and internal efficiency, as well as simplified the design process. The lightweight racecar was successfully test-driven at the 24-hour Lemans race and in the U.S. Petit Le Mans.

Windform 3D printing materials are made from a range of polyamide powders suited for selective laser sintering (SLS) in additive manufacturing. The DeltaWing car used Windform XT 2.0, a polyamide-based composit reinforced with carbon fiber that complies with ASTM E-595-07 standards. Heat resistant, durable, and lightweight, it’s suitable for aerospace as well as motorsport applications.

To significantly decrease mass, Zack Eakin, a DeltaWing engineer, proposed that the team replace the racecar’s gearbox siding with Windform XT 2.0. He designed a non-stressed member engine and gearbox that would reduce vibrations on the lightweight components. In the end, the gearbox with integral bell housing weighed only 33 kg.

The final gearbox with integral bell housing weighed only 33 kg.

The new availability of this robust 3D-printing material also allowed the team to make other key changes to benefit the car. Windform XT 2.0’s resistance to high temperatures and pressures allowed the DeltaWing team to redesign oil flow and gearbox structure to reduce parasitic losses. The team easily fabricated an otherwise complicated 3D-printed piece with integral oil drillings, a task that would typically require a 5-axis manufacturing process. 

In addition to the new gearbox design’s transmission seal covers with pressurized oil-feed passages, the team used Windform XT 2.0 to additively manufacture electronics enclosures, electrical breakout boxes, and a tow hook plinth. In the prototyping and tooling phase, Windform XT 2.0 was applied in brake inlets and ducting, air inlet ducting, and filter enclosures.

About the Author

Leah Scully | Associate Content Producer

Leah Scully is a graduate of The College of New Jersey. She has a BS degree in Biomedical Engineering with a mechanical specialization.  Leah is responsible for Machine Design’s news items that cover industry trends, research, and applied science and engineering, along with product galleries. Visit her on Facebook, or view her profile on LinkedIn

Sponsored Recommendations

How to Build Better Robotics with Integrated Actuators

July 17, 2024
Reese Abouelnasr, a Mechatronics Engineer with Harmonic Drive, answers a few questions about the latest developments in actuators and the design or engineering challenges these...

Crisis averted: How our AI-powered services helped prevent a factory fire

July 10, 2024
Discover how Schneider Electric's services helped a food and beverage manufacturer avoid a factory fire with AI-powered analytics.

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!