Chip computer

Researchers Build Computer-on-a-Chip Prototype

April 2, 2019
Computers just got a little smaller.

Stanford researchers led an international team of engineers that figured out how to pack many functions of a computer onto a single chip, including processing circuits, memory storage, and a power supply. The prototype’s data processing and memory circuits use less than a tenth as much electricity as comparable electronic devices, yet still perform many advanced computing feats.

The prototype is built around data storage technology called resistive random-access memory (RRAM), which can pack more data into less space than any other form of memory and retains data when the chip hibernates—an energy-saving tactic built into the chip. It is also energy-efficient, so as to not overtax power supplies.

RRAM can also be built atop a processing circuit to combine data storage and computation into a single chip. This adds more energy efficiency and speeds processing.

To improve the storage capacity of RRAM, the Stanford team increased how much information each storage unit, or cell, holds. Memory devices typically consist of cells that store a zero or a one. The researchers devised a way to pack five values into each cell rather than just the two standard options.

As data is continuously written to a chip’s memory cells, they can wear down, scrambling data and causing errors. So the researchers developed an algorithm to prevent such exhaustion. Test show that the algorithm gave their prototype’s memory a 10-year lifespan.

The current prototype is about the diameter of a pencil, still too large for futuristic IoT applications, but the way the prototype combines memory and processing could be incorporated into chips for smartphones and other mobile devices. In fact, chipmakers are showing interest in this new architecture, which was one of the Stanford team’s goals.

Sponsored Recommendations

7 Reasons Why Air Bearings Outperform Mechanical Bearings

Feb. 7, 2025
Frictionless air bearings and air bearing stages have decisive advantages in precision motion and automation applications.

Hexapod Robot Applications in Automation and Automotive Assembly

Feb. 7, 2025
Hexapod 6-DOF Robots in Automation and Automotive Assembly | 6-Axis Precision Parallel Robot | Cobot for High Precision Applications

What is a Difference between a Gantry Positioning System and a Split-Bridge?

Feb. 7, 2025
The design of a Gantry Positioning System and Split-Bridge Positioning system are related. Learn how they differ and what to use best for your application.

Application Solutions with 6-Axis Hexapod Positioning Systems

Feb. 7, 2025
Explore applications, articles, and background information on 6-Axis Hexapod Positioning Systems and how they can help you improve your alignment system.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!