Sensor Sense: Inductive Position-Measurement Sensors

May 8, 2008
Analog inductive sensors, as discussed in the Jul y 2006 Sensor Sense (tinyurl.com/2aok9m), return the relative distance of the target from the sensor face.

But their limited range and linearity limit many of their applications to detecting odd or irregularly shaped targets rather than actual position.

On the other hand, inductive linear-position sensors use analog sensing to return the position of the target over a distance of up to 360 mm with a linearity error of ±0.4 mm and resolution of 360 μm. They can also be used for rotational angle measurements for 360° applications.

Linear-position sensors perform this feat using multiple sensing coils in an array that spans the sensing distance. A special target called an attenuator slides along the sensing range, moving from one coil to the next buried in the main body of the sensor. A microprocessor integrates the output from each coil, translating the information into a true target position that is sent as a 0-to-10-V or 4-to-20-mA analog signal.

The microprocessor adds several advantages: Not only does it evaluate position using the multiple coils along the length of the sensor, it compensates for temperature variations and applies linearization correction to boost measurement accuracy. Future connectivity and programmability options might include scaling, range setting, limit detection, and value evaluation as well as communication interfaces such as CANopen and RS-232.

Each linear-position sensor comes with an attenuator. But any ferrous material will also work as an attenuator provided it maintains the specified width across the entire active region of the sensor. For example, a specified 8-mm-wide attenuator centered directly over one sensing coil partially overlaps the coils ahead and behind. The microprocessor reads the value from all three coils, calculating the center line of the attenuator based on the ratio of the coil outputs and the attenuator’s 8-mm width. A wider or thinner attenuator would reduce accuracy and resolution.

The actual distance of the attenuator above the sensor is immaterial as long as it stays within the specified range, typically 1 to 6 mm, with a corresponding reduction in distance if the attenuator is nonferrous metal.

This transparent view of an inductive linear-position sensor shows the multiple sensing coils buried within the main body of the sensor. A microprocessor within the main body calculates the position of the attenuator as it moves from coil to coil.

About the Author

Robert Repas

Robert serves as Associate Editor - 6 years of service. B.S. Electrical Engineering, Cleveland State University.

Work experience: 18 years teaching electronics, industrial controls, and instrumentation systems at the Nord Advanced Technologies Center, Lorain County Community College. 5 years designing control systems for industrial and agricultural equipment. Primary editor for electrical and motion control.

Sponsored Recommendations

Flexible Power and Energy Systems for the Evolving Factory

Aug. 29, 2024
Exploring industrial drives, power supplies, and energy solutions to reduce peak power usage and installation costs, & to promote overall system efficiency

Timber Recanting with SEW-EURODRIVE!

Aug. 29, 2024
SEW-EURODRIVE's VFDs and gearmotors enhance timber resawing by delivering precise, efficient cuts while reducing equipment stress. Upgrade your sawmill to improve safety, yield...

Advancing Automation with Linear Motors and Electric Cylinders

Aug. 28, 2024
With SEW‑EURODRIVE, you get first-class linear motors for applications that require direct translational movement.

Gear Up for the Toughest Jobs!

Aug. 28, 2024
Check out SEW-EURODRIVEs heavy-duty gear units, built to power through mining, cement, and steel challenges with ease!

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!