Sensor Sense: Inductive Position-Measurement Sensors

May 8, 2008
Analog inductive sensors, as discussed in the Jul y 2006 Sensor Sense (tinyurl.com/2aok9m), return the relative distance of the target from the sensor face.

But their limited range and linearity limit many of their applications to detecting odd or irregularly shaped targets rather than actual position.

On the other hand, inductive linear-position sensors use analog sensing to return the position of the target over a distance of up to 360 mm with a linearity error of ±0.4 mm and resolution of 360 μm. They can also be used for rotational angle measurements for 360° applications.

Linear-position sensors perform this feat using multiple sensing coils in an array that spans the sensing distance. A special target called an attenuator slides along the sensing range, moving from one coil to the next buried in the main body of the sensor. A microprocessor integrates the output from each coil, translating the information into a true target position that is sent as a 0-to-10-V or 4-to-20-mA analog signal.

The microprocessor adds several advantages: Not only does it evaluate position using the multiple coils along the length of the sensor, it compensates for temperature variations and applies linearization correction to boost measurement accuracy. Future connectivity and programmability options might include scaling, range setting, limit detection, and value evaluation as well as communication interfaces such as CANopen and RS-232.

Each linear-position sensor comes with an attenuator. But any ferrous material will also work as an attenuator provided it maintains the specified width across the entire active region of the sensor. For example, a specified 8-mm-wide attenuator centered directly over one sensing coil partially overlaps the coils ahead and behind. The microprocessor reads the value from all three coils, calculating the center line of the attenuator based on the ratio of the coil outputs and the attenuator’s 8-mm width. A wider or thinner attenuator would reduce accuracy and resolution.

The actual distance of the attenuator above the sensor is immaterial as long as it stays within the specified range, typically 1 to 6 mm, with a corresponding reduction in distance if the attenuator is nonferrous metal.

This transparent view of an inductive linear-position sensor shows the multiple sensing coils buried within the main body of the sensor. A microprocessor within the main body calculates the position of the attenuator as it moves from coil to coil.

About the Author

Robert Repas

Robert serves as Associate Editor - 6 years of service. B.S. Electrical Engineering, Cleveland State University.

Work experience: 18 years teaching electronics, industrial controls, and instrumentation systems at the Nord Advanced Technologies Center, Lorain County Community College. 5 years designing control systems for industrial and agricultural equipment. Primary editor for electrical and motion control.

Sponsored Recommendations

How to Build Better Robotics with Integrated Actuators

July 17, 2024
Reese Abouelnasr, a Mechatronics Engineer with Harmonic Drive, answers a few questions about the latest developments in actuators and the design or engineering challenges these...

Crisis averted: How our AI-powered services helped prevent a factory fire

July 10, 2024
Discover how Schneider Electric's services helped a food and beverage manufacturer avoid a factory fire with AI-powered analytics.

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!