Machine Design
  • Resources
  • Members
  • Directory
  • Webinars
  • WISE
  • CAD Models
  • Advertise
    • Search
  • 3D Printing & CAD
  • AUTOMATION & IIOT
  • Robotics
  • Motion Systems
  • Materials
  • Video
  • Data Sheets
  • Topics
    Industry Markets3D Printing & CADAutomation & IIoTFastening & JoiningMaterialsMechanical & Motion Systems Medical DesignRobotics
    Resources
    Machine Design ResourcesWISE (Workers in Science & Engineering)Company DirectorySearch Data SheetsContributeDigital Edition ArchivesCSIA Exchange
    Members
    ContentBenefitsSubscribe
    Advertise
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    1. Automation & IIoT

    Watchdog Timer Enables Capacitive Touch Sensor

    Sept. 24, 2009
    A simple four-component circuit allows a single I/O line from any microcontroller to sense the states of two capacitive touch sensors.
    Leland Teschler

    With so many cell phones, PDAs, and MP3 players using touch-sensitive keypads, wheels, and screens for user input, regular mechanical pushbuttons are beginning to seem outdated. Even so, mechanical pushbuttons should stay around for a long time, because they cost much less than the controller IC required for a touch sensor.

    Suppose you want to improve the look and feel of a product by using a touch sensor, but can’t afford the fancy controller IC. You could then consider a simple four-component circuit which allows a single I/O line from any microcontroller to sense the states of two capacitive touch sensors.

    In its standard application, the watchdog timer (U1) uses two capacitors to set the watchdog and reset timeout periods. In this circuit the capacitors are replaced by touch sensors A and B, and the two 4.7-k resistors limit current in the IC’s protection diodes during an ESD event.

    WDI is tied low to ensure the watchdog timer always times out, and the Reset output connects to the microcontroller I/O pin. Touch sensor “A” determines the watchdog timer timeout period (tA in the diagram), and touch sensor “B” determines the reset timeout period (tB in the diagram).

    Thus, by repeatedly measuring the reset signal’s high and low periods, the microcontroller can determine when either sensor is touched. If a sensor is untouched, the associated period is about 40 μsec. When touched, the sensor signal period rises to 400 μsec or more. Empirical testing can help you choose the timing thresholds that enable firmware code to decide whether a sensor is being touched.

    — Eric Schlaepfer

    Eric Schlaepfer, Maxim Integrated Products Inc., Sunnyvale, Calif., www.maxim-ic.com

    Continue Reading

    The Rise of the Sustainability Engineer

    Solving the Challenges of Battery Production Growth Through Smart Measurement

    Sponsored Recommendations

    Smart Factory Solutions that Connect and Protect from Amphenol RF

    Nov. 28, 2023

    Stay Connected and In Control of Your Future Factories with Littelfuse

    Nov. 28, 2023

    Turn to NKK Switches for the Widest Range of Industrial-Savvy Electromechanical Switches

    Nov. 28, 2023

    Unlocking Operational Flexibility in Manufacturing with Industria IoT

    Nov. 28, 2023

    Voice your opinion!

    To join the conversation, and become an exclusive member of Machine Design, create an account today!

    I already have an account

    New

    Most Read

    Sponsored

    Industrial Automation in the Age of Electrification

    Industrial Automation & Process Controls

    Reliable and Accurate Sensing for Demanding Applications

    Machine Design
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    • About Us
    • Contact Us
    • Advertise
    • Do Not Sell or Share
    • Privacy & Cookie Policy
    • Terms of Service
    © 2023 Endeavor Business Media, LLC. All rights reserved.
    Endeavor Business Media Logo