Image

MSD 101: Magnetostrictive position sensors

Sept. 1, 2000
The tendency of certain materials to deform in a magnetic field is the working principle behind many industrial devices, including magnetostrictive position sensors

The tendency of certain materials to deform in a magnetic field is the working principle behind many industrial devices, including magnetostrictive position sensors. Here, magnetostriction occurs along a ferromagnetic wire, or waveguide, that passes through a ring-shaped magnet serving to indicate position.

The actual measurement process is somewhat involved, but it produces repeatable, accurate results. First, a flash of current shoots through the wire, creating a column of magnetic flux that reacts with the localized field of the permanent magnet. The brief meeting between the two magnetic fields induces a torque on the wire, causing it to twist at the point where the fields intersect. The twist then propagates in both directions, traveling at a sonic rate of about 3.55 μsec/cm. The time it takes the strain pulse to reach the end of the waveguide gives an accurate measure of the magnet’s position.

What happens next centers on the action of a cantilever beam welded to the waveguide. The beam, which extends through the hollow of a pickup coil, deflects in the direction of the strain pulse, rerouting the flux of a nearby bias magnet. The coil senses this variation, producing a current pulse in response. The actual output depends on interface electronics and can be anything from a pulse-width-modulated position signal to an analog waveform indicating velocity.

Questions & answers

Q: What is the typical resolution?
A: Some sensors can resolve movements as small as 2 μm with a single interrogation. In general, R = 1/GfC, where R = resolution (in.); G = gradient, the rate of strain propagation along the waveguide (about 9.0 μsec/in.); f = counter frequency (about 28 MHz); and C = circulations, the number of interrogations averaged to calculate position.

Q: How long is the sensing range?
A: Stroke lengths of up to 144 in. are easily achieved with 0.01% nonlinearity.

Q: Are these devices suited for tough jobs?
A: Many are fully encapsulated, rated IP-67. They also withstand high shock (20g) and vibration (5g) and are reasonably stable, having temperature coefficients in the range of 100 ppm/°C.

Sponsored Recommendations

How to Build Better Robotics with Integrated Actuators

July 17, 2024
Reese Abouelnasr, a Mechatronics Engineer with Harmonic Drive, answers a few questions about the latest developments in actuators and the design or engineering challenges these...

Crisis averted: How our AI-powered services helped prevent a factory fire

July 10, 2024
Discover how Schneider Electric's services helped a food and beverage manufacturer avoid a factory fire with AI-powered analytics.

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!