Image

MSD 101: Shaft raceways

Jan. 1, 2003
Because shafts provide the inner raceways for all linear bearings, theirs is often lumped into bearing design as an afterthought

Because shafts provide the inner raceways for all linear bearings, theirs is often lumped into bearing design as an afterthought. But bearing raceway sections on shafts are very critical because some (if not most) bearing failures actually result from shaft problems; variances translate through bearings to surrounding equipment. Carefully considering shaft dimensions, surface finishes, and hardness improves uniform load distribution, improved system accuracy, and life.

Q: How should surface hardness be specified?
A:
Tolerances don’t mean much if they don’t last. Two things — magnitude and depth — determine the extent to which hardening extends life. To maximize benefits, evenness is paramount. Sudden hardness drop-offs at shallow depths can cause surfaces to become brittle and wear prematurely. Dropoffs deeper in the material minimize the positive effects of hardening. At the very least, raceway areas should be surface hardened with reasonable core strength for full bearing capacity. Steels high in sulfur or lead are not acceptable. Oil holes are okay in raceway areas, but edges should be gently blended.

Q: How can dimension affect performance?
A: Shafts must be of sufficient size to keep operating deflections within limits. Out-ofroundness shouldn’t exceed 0.0025 mm for diameters to 25 mm. Above that, as a ballpark figure, allowable radial deviation can equal raceway diameter divided by 25, plus 0.0025 mm.

For effective shaft/bearing assembly, the end of the shaft should have the larger chamfer. This prevents roller complement damage and raceway surface scratching.

Q: How does surface finish factor in?
A: Grinding within a consistent range makes for more consistent loading (benefiting roller element bearings) because rolling surfaces have increased contact with the shaft. Polishing makes for decreased wear particulate generation, which is required for many clean room applications. It also removes microscopic peaks from shaft surfaces to reduce drag (benefiting plane bearings with less binding.)

Improper shaft finishes keep bearings from gripping correctly. Without the proper contact between bearing and shaft, rings tend to creep, wear, and cause corrosion. Wear (metal-to-metal rubbing) contributes to early bearing failure. Another problem stems from grind reliefs and fillets extending into a shaft’s raceway area. These sites often invite early failure especially if the rollers overhang them, causing high stress concentrations. (As a general rule of thumb, raceway finishes should not exceed 0.2 μm on the Ra scale.) Another point to remember: Sometimes bearing contact seals operate on surfaces ground for bearing raceways. Here, subtle shaft finish patterns can make trouble; a spiraled finish (for example, from through-fed centerless grinding) may pump lubricant past seals.

Sponsored Recommendations

Diaphragm Pump Technology Drives Industrial Washers

Jan. 23, 2025
Discover high-performance pumps and systems built to handle various gases, liquids, and chemicals with precision.

Harmonic Drive Actuators with Integrated Drive Technology

Jan. 17, 2025
Discover the future of motion control.In this video, we explore how integrated drive technology (IDT) from Harmonic Drive is revolutionizing the precision mo...

7 factors to Consider When Choosing the Right Gear Technology

Jan. 17, 2025
Choosing a drive involves several design factors that depend greatly on the task at hand. This top 7 list will guide you, whether your task requires precise and exact movements...

What are the Benefits of Actuators with Integrated Servo Drives?

Jan. 17, 2025
Actuators with Integrated Servo Drive Technology (IDT) simplify cable management, control hardware, and commissioning while achieving outstanding performance in a compact size...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!