Courtesy of O.R. Laser
OR Laser39s powder nozzle and laser head can deposit alloy coatings onto sensors without damaging them

3D-Printing Deposition Method Augments Sensor Durability

Aug. 9, 2016
O.R. Laser's powder nozzle and laser head can deposit alloy coatings onto sensors without damaging them.

Additive manufacturing can be a powerful weapon in producing durable outer protection for sensors used in high-pressure environments, such as pipelines in the gas and oil industry. These coatings significantly improve sensor useful life despite sheer stresses and pressures on the magnitudes of hundreds of bars.

One company that takes the additive-manufacturing route is O.R. Lasertechnologie. To create such coatings, the company’s R&D team invented a powder nozzle that deposits Stellite, a cobalt-chromium-based alloy, onto the sensors. Using a compact EVO mobile laser welding system, they deposit Stellite powder coaxially with the laser beam at deposition rates as high as 5000 mm3/h.

Stellite is traditionally difficult to machine onto sensor surfaces—the intense heat during layer deposition causes the sensor material and the Stellite to melt together, impacting the integrity of the sensor. But by applying a powder-based laser cladding method called direct metal deposition (DMD), the team melted Stellite onto the sensor with a low-power laser as low as 200 W. In addition to the low laser temperatures, the coating was melted to the sensors at only a few scattered points to minimize melting of the sensor material.

The Stellite-powder grain sizes are between 45 and 90 µm for undistorted, crack-free coating, and track widths between 200 µm and 2 mm for precise deposition. DMD was also done in a chamber of the noble gas argon, to prevent the coating’s reaction with the atmosphere during deposition and the generation of gas bubbles. 

O.R. Laser's powder nozzle can also be controlled with ORLAS SUITE—its new CAM software that enables automatic coating of complex workpieces.To learn about O.R. Laser's technologies and services, visit their website

About the Author

Leah Scully | Associate Content Producer

Leah Scully is a graduate of The College of New Jersey. She has a BS degree in Biomedical Engineering with a mechanical specialization.  Leah is responsible for Machine Design’s news items that cover industry trends, research, and applied science and engineering, along with product galleries. Visit her on Facebook, or view her profile on LinkedIn

Sponsored Recommendations

March 31, 2025
Unlike passive products - made of simple carbon springs - the bionic prostheses developed by Revival Bionics are propulsive, equipped with a motor and an artificial Achilles tendon...
March 31, 2025
Electric drives are a key technology for the performance of machines, robots, and power tools. Download this guide for an introduction to high-quality mechatronic drive systems...
March 31, 2025
Discover the world of maxon drive technology: motors, gearheads, sensors, controllers, and accessories. Configure your drive system online, including all relevant product and ...
March 31, 2025
Share current page XSun designs and manufactures a drone that is both energy-independent and can make its own decisions, for fully-automated missions. The company needed reliable...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!