Machine Design
  • Resources
  • Members
  • Directory
  • Webinars
  • WISE
  • CAD Models
  • Advertise
    • Search
  • 3D Printing & CAD
  • AUTOMATION & IIOT
  • Robotics
  • Motion Systems
  • Materials
  • Video
  • Data Sheets
  • Topics
    Industry Markets3D Printing & CADAutomation & IIoTFastening & JoiningMaterialsMechanical & Motion Systems Medical DesignRobotics
    Resources
    Machine Design ResourcesWISE (Workers in Science & Engineering)Company DirectorySearch Data SheetsContributeDigital Edition ArchivesCSIA Exchange
    Members
    ContentBenefitsSubscribe
    Advertise
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    Machinedesign 6684 Goldense Promo 0
    1. Community
    2. Guest Commentary

    Product Architecture in The Digital Age

    May 21, 2014
    The discipline of systems engineering came of age in World War II when the United States entered the war late and could not get everything done it needed to do quickly enough. A number of disparate disciplines were rapidly integrated into “logical units” under the heading of systems engineering to enable the shortest possible design-to-production cycles.
    Bradford Goldense
    Machinedesign Com Sites Machinedesign com Files Uploads 2014 05 Goldense Mu Gw Name
    The discipline of systems engineering came of age in World War II when the United States entered the war late and could not get everything done it needed to do quickly enough. A number of disparate disciplines were rapidly integrated into “logical units” under the heading of systems engineering to enable the shortest possible design-to-production cycles.

    Systems engineering became the nerve center of product creation. Key responsibilities included requirements management and trade-offs, product architecture, modular design, high-level design, work breakdown structure, communication to individual technical disciplines and supporting departments, and often program management.

    The result was a discipline that assured the design principles, parameters, and requirements of new products were implemented in a logical, efficient, and scalable manner — and as fast as possible. Numerous product platforms that have lasted for decades in our country, as well as our corporations and society, originated from the soundness of systems engineering approaches. Just about every engineer, or technical, and scientific professional wishes their products would withstand the same tests of time.

    In the late 1980s and early 1990s, industry-leading firms such as HP, IBM, Corning, Northern Telecom, Motorola, and Analog Devices among others, sought to further improve on systems engineering’s output by understanding the impact of product requirements on the variability and volatility of product architectures and designs. An article published by Ashok Gupta in the 1990 winter issue of California Management Review best captured the collective findings on requirements. In short, 71% of things that go wrong in product development can be traced to some type of requirements error.  In that same time frame, “the power of centralized organizations” was becoming increasingly unpopular in the workplace.

    The elevated importance of robust product definition was implemented by migrating it to marketing and product management organizations. Product champions became the stars and the number of technical professionals involved in requirements definition gradually declined, as did their product architectures.

    Think about that 71% figure. It implies three out of four errors in product development are at least partially avoidable by up-front planning and analysis. Younger readers may say, “looks like some old fogie is writing the article.” But even if only half of those 71% of failures are due to incorrect or incomplete requirements, that would translate to 35%, which is still highly significant.

    Things are different now, younger professionals might say. “We can be agile, rational, scrum, and sprint! And software is easier to modify, more flexible, and better all around.”

    That’s all well and good, but the number of designs that are “spaghetti-like” in their architecture has been rising. Sure, the wizards get the rabbit out of the hat and make the product work, somewhat. But are we giving our companies and customers a “best-in-class product?” Missed, incomplete, unclear, and misinterpreted requirements are the ingredients of spaghetti architectures.

    We should learn from the recent past and ensure technical professionals are heavily involved in the requirements definition and management process. We should also go back to formally integrating relationships between systems, product architecture, and technical professionals, and the product or marketing organization responsible for requirements.

    Numerous studies indicate that people have not changed much since the 1930s. Nobody liked centralized power then and nobody likes it now. However, the best product architectures require organizational tolerance for power. It is worth the effort to build and empower the “logical units” that once emanated from systems engineering and are fundamental to R&D productivity. The return to these logical units creates competitive advantage, modularity, and flexibility. It also has lower internal cost structures, which result in higher profits. Professionals working on projects can now turn sound management science to their advantage in the digital age without centralization. And our products will have a better chance to last generations.

    ____________________

    BRADFORD L. GOLDENSE, NPDP, CMfgE, CPIM, CCP, president of Goldense Group Inc. (GGI), has advised over 300 manufacturing companies on four continents in product management, R&D, engineering, product development, and metrics. GGI is a consulting, market research, and executive education firm founded in 1986.

    Continue Reading

    Design Evolution: Simulation-Driven & Generative Design Unleashed

    Q&A: Supply Chain Management with 3D Printing: Input from HP’s Dave Prezzano

    Sponsored Recommendations

    Smart Factory Solutions that Connect and Protect from Amphenol RF

    Nov. 28, 2023

    Stay Connected and In Control of Your Future Factories with Littelfuse

    Nov. 28, 2023

    Turn to NKK Switches for the Widest Range of Industrial-Savvy Electromechanical Switches

    Nov. 28, 2023

    Unlocking Operational Flexibility in Manufacturing with Industria IoT

    Nov. 28, 2023

    Voice your opinion!

    To join the conversation, and become an exclusive member of Machine Design, create an account today!

    I already have an account

    New

    Using Natural Language Understanding to Power Productivity

    Intelligent Assistant Platforms Improve Conversations with Industrial Robots

    Natural Language Conversation Assistants Cross Over from Vehicles to Industrial Machinery

    Most Read

    How Much Should a Bolted Joint be Tightened?

    SCHURTER FXP Fuse Holder is Designed for High-Power Applications

    Brushed vs Brushless Motors: Which is Best for your Application?

    Sponsored

    Unlocking Operational Flexibility in Manufacturing with Industria IoT

    Bourns Stifles Surges, Diminishes Downtime and Protects Parts

    Industrial Internet Of Things

    Machine Design
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    • About Us
    • Contact Us
    • Advertise
    • Do Not Sell or Share
    • Privacy & Cookie Policy
    • Terms of Service
    © 2023 Endeavor Business Media, LLC. All rights reserved.
    Endeavor Business Media Logo