Image

What’s the Difference Between Stress-Strain Curves and Stiffness-Strain Curves?

Sept. 16, 2015
Engineers have long used stress-strain curves to uncover a host of material properties including elastic limit, elastic and plastic ranges, yield point, ultimate and rupture strengths, and the moduli of resilience and toughness.

Engineers have long used stress-strain curves to uncover a host of material properties. The curves are created by plotting the results of tensile strength tests of material samples, putting stress (force divided by area) on the y-axis and strain (stretch divided by gage or original length) on the x-axis. Some of the key material properties the curve can reveal include the material’s elastic limit, along with the elastic and plastic ranges, the yield point, ultimate and rupture strengths, and the moduli of resilience and toughness.

Sometimes, however, engineers must interpolate between data points to get those performance figures. Often a stiffness-strain curve tensile test result defines some material properties more precisely—no interpolating or “guesstimation” needed. It puts stiffness (change in stress divided by change in strain) on the y-axis and strain on the x-axis. In effect, it graphs the slope of the stress-strain curve as a function of strain.

The two graphs on the left, for example, show the stress-strain curve (above) and the stiffness-strain curve (below) of a low-carbon steel. On the traditional stress-strain curve, engineers must measure the slope of the initial portion of the curve to determine the stiffness. On the stiffness-strain curve, however, engineers directly take the y-intercept as the stiffness value.

The stiffness-strain plot uses the same data as the stress-strain curve, but for the clearest representation, engineers might need to use an expanded scale. They can do this by using more data points from the test results on curved portions and parts of the graph with the features of interest. Or they can increase the number of data points by using a program that generates intermediate point as using a suitable interpolation algorithm.

Sponsored Recommendations

Sept. 16, 2025
From robotic arms to high-speed conveyors, accuracy matters. Discover how encoders transform motor control by turning motion into real-time datadelivering tighter speed control...
Sept. 16, 2025
Keep high-torque gearboxes running efficiently with external lubrication and cooling systems delivered fast. Flexible configurations, sensor-ready monitoring, and stocked options...
Sept. 16, 2025
Now assembled in the U.S., compact P2.e planetary gear units combine maximum torque, thermal efficiency, and flexible configurations for heavy-duty applicationsavailable faster...
Aug. 22, 2025
Discover how to meet growing customer demands for custom products without overextending your engineering team. Learn how scaling your automation strategy can help you win more...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!