The image depicts Raman spectroscopy of biomarkers adhered to individual tumor cells The markers are hit with monochromatic light red and reflect light of a longer wavelength green to produce a highly detailed image of the tumor

Biomarkers Light the Way to Detailed Brain-Tumor Images

March 15, 2016
Scientists at Memorial Sloan Kettering Cancer Center's Kircher laboratory have developed a biomarker that adsorbs exclusively to the surface of cancerous cells in brain tumors.

Scientists at Memorial Sloan Kettering Cancer Center’s Kircher laboratory have developed a biomarker that adsorbs exclusively to the surface of cancerous cells in brain tumors. The technology is described as “theranostic” because the nanoprobes can be used for therapeutic purposes (surgery) as well as diagnostics, even in the early stages of cancer.

“We hope our technique will be helpful in showing surgeons exactly where the borders of the tumor are located,” says Dr. Moritz Kircher, who heads the lab. “It may also be useful in finding cancer cells that have spread away from the primary tumor site.” Kircher expects the study to lead to complete removal of brain tumors.

The nanoprobes have successfully been used in mice to generate high-resolution images of brain tumors using surface-enhanced Raman Spectroscopy (SERS). The report published in Nature Magazine claims that the SERS nanoprobes enable detailed imaging down to the tumor’s finger-like projections, which extend into the healthy tissue of the brain.

Upon excitation by incident light, electrons jump from their ground state to higher quanta. Unlike Raleigh scattering (red), Raman scattering is inelastic; energy is lost to the system and the electrons emit of a longer-wavelength photon (smaller ΔE) as the electrons fall back to a higher energy state than ground.

The nanoprobes are injected intravenously and bind to the tumor cells for imaging. They contain a layer of Raman-active material that, when hit with monochromatic light, emits light at a photonic wavelength longer than that of the incident light. The reduction in energy is due to inelastic scattering, or the loss of energy to interatomic vibrations. An extra layer enhances the signal so that the wavelength of emitted light can be processed by a computer database. The strength and orientation of the molecular bonds can then be determined to enable extremely precise and accurate imaging of the brain tumor at the molecular level.

Since the nanoprobes remain on the cells for a few days, they can be used for imaging before and during the surgery. They also can be excited by a light source to generate heat and, in turn, destroy malignant cells that cannot be removed surgically. They do not interrupt whole-body imaging techniques like MRI, PET, or CT, and are compatible for photoacoustic imaging to enable deep-tissue localization during surgery. 

About the Author

Leah Scully | Associate Content Producer

Leah Scully is a graduate of The College of New Jersey. She has a BS degree in Biomedical Engineering with a mechanical specialization.  Leah is responsible for Machine Design’s news items that cover industry trends, research, and applied science and engineering, along with product galleries. Visit her on Facebook, or view her profile on LinkedIn

Sponsored Recommendations

How to Build Better Robotics with Integrated Actuators

July 17, 2024
Reese Abouelnasr, a Mechatronics Engineer with Harmonic Drive, answers a few questions about the latest developments in actuators and the design or engineering challenges these...

Crisis averted: How our AI-powered services helped prevent a factory fire

July 10, 2024
Discover how Schneider Electric's services helped a food and beverage manufacturer avoid a factory fire with AI-powered analytics.

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!