Image

Aquatic robot keeps in touch, thanks to compact steerable antenna

Aug. 29, 2013

An autonomous oceangoing robot maintains a satellite link to shore bases even in rough seas, thanks to an Agile Aperture Antenna developed by researchers at the Georgia Institute of Technology.

The Agile Aperture Antenna was tested at the Georgia Institute of Technology, where it was developed.

The robot, called the Wave Glider, was built by Liquid Robotics Inc. in Sunnyvale, Calif. The antenna consists of a thin dielectric substrate supporting an array of square metallic patches that can be switched on or off to steer the outgoing beam or optimize the incoming signal. The antenna tracks its position and orientation relative to the satellite without any input from other components on the Wave Glider. The antenna consumes 0.25 W of power, which it gets from solar panels on the craft, and can switch up to 1,000 beams/sec while transmitting data at 200 kbits/sec. Originally developed for the military, it takes up less space and uses less power than a gimbaled antenna or phased array.

The Wave Glider gets electricity for propulsion by harvesting energy from the motion of the ocean. It can transmit video, audio, or environmental data such as salinity, temperature, or dissolved oxygen, to an Earth station via satellite. It could also be used for security purposes.

Resources: Georgia Institute of TechnologyLiquid Robotics Inc.

Sponsored Recommendations

June 27, 2025
Ensure workplace safety and compliance with our comprehensive Lockout/Tagout (LOTO) Safety Training course. Learn critical procedures to prevent serious injuries.
June 27, 2025
Join our expert webinar to discover essential safety control measures and best practices for engineering a truly safe and compliant industrial environment.
June 25, 2025
An innovative aircraft with electric drives combines the best of both worlds. The cross between drone and helicopter could mean significantly faster and more efficient air emergency...
June 25, 2025
Effective when other materials fail, ceramics are particularly suitable for applications requiring wear and chemical resistance, sliding characteristics or biocompatibility. Discover...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!