Bret Latter
Sandia National Laboratories researcher Kenny Armijo

New “Fuse” Prevents Solar-Panel Fires

Nov. 20, 2020
A polymer-based device developed at Sandia helps prevent solar panel fires.

As the voltages generated by solar panels increase, so too does the risk of damaged wires causing high-power discharges of electricity that result in explosions or flash overs.

To reduce or eliminate that risk, researchers at Sandia National Laboratories, working with engineers from Guardian Sensors Inc., developed electrical in-line connectors that automatically predict and prevent photovoltaic arc-faults before they can ignite electrical fires.

The in-line connector developed by the team measures about an inch long with the diameter of a dime. It contains a metal spring covered in a self-extinguishing polymer material developed and tested at Sandia over the last five years. It could replace current connectors and link a series of solar panels that could operate together in a field or on a roof.

All connectors are susceptible to corrosion, damage or poor installation, which can lead to unreliability issues—especially if the wires have tiny crevasses or breaks. In conventional connectors carrying high currents and voltages, those imperfections can create sparks and fire can break out. The connectors have no protection against it.

The new in-line connectors are designed to activate at temperatures above 185°F. At that point, the self-extinguishing polymer melts, filling in the crevasses or breaks in the wires, and the spring expands. This widens the spark gap between wire conductors, and they no longer generate energy that leads to heat and fires. The speed of the reaction and the polymer’s fire resistance can stop a fire before it starts—in less than two seconds.

Sandia was able to provide Guardian Sensors access to a patented, special arc-fault generator at the labs for testing. It was developed by researchers trying to determine how dangerous arc-faults are; it can also test different materials for reliability in high-voltage connectors and electrical wiring. It was used to test a prototype of the new inline connector.

In the future, the device could be used with other types of power sources and storage devices, such as batteries.

Sponsored Recommendations

High Pressue, High Temperature Pump

April 29, 2024
This innovative axial piston design eliminates the use of elastomers, increases resistance to contamination, and dramatically improves reliability. They can generate up to 10,...

MOVI-C Unleashed: Your One-Stop Shop for Automation Tasks

April 17, 2024
Discover the versatility of SEW-EURODRIVE's MOVI-C modular automation system, designed to streamline motion control challenges across diverse applications.

A Comprehensive Guide for Automation Success

April 17, 2024
Gain insight into the benefits that SEW-EURODRIVE's streamlined automation processes offer to industries involved in machine automation and factory operations.

Navigating the World of Gearmotors and Electronic Drives

April 17, 2024
Selecting a gearmotor doesn’t have to be a traumatic experience. The key to success lies in asking a logical sequence of thoughtful questions.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!