LNO thin film

Purdue Researchers Develop New Approach to Grow Thin Electronics Films

March 30, 2021
A LNO-Au buffer layer reduces twinning, resulting in single domain growth on films used in acoustics, optics and electronics.

Haiyan Wang, a Purdue University materials engineer, has developed a new approach to creating epitaxial lithium niobate (LNO) thin films used for various optics, acoustics and electronics devices.

These thin films are used in the manufacturing of high-frequency and wide-band RF filters adapted for 5G infrastructures. They are frequently used in applications requiring thin films that reduce optical and acoustic losses without in-plane twin growth domains.

“We created an approach that makes these films easier to produce,” Wang said in a press release. “We developed a versatile nanocomposite-seeded approach that allows us to create single-layer films. Typically, engineers have used a double-layer approach, which adds to the complicated production process.”

The approach uses a nanocomposite buffer layer composed of LNO-Au to serve as a template for seeding the growth of untwinned LNO films. The researchers believed the inclusion of gold could reduce twin formation by “facilitating the LNO growth and nucleation and minimizing the strain-induced domain formation.”

The Au nanoparticles, temperature and the Li-rich target reduced the formation of misfit dislocation, resulting in single domain growth.

A study on this process was published in Advanced Photonics Research. The work was supported by Sandia National Laboratories through its Academic Alliance Program.

Wang’s team and the Purdue Research Foundation’s Office of Technology Commercialization (OTC) are looking for partners to continue developing their technology. For more information on licensing and other opportunities, contact Will Buchanan of OTC at [email protected] and mention track code 2021-WANG-69382.

Wang’s team and the Purdue Research Foundation’s Office of Technology Commercialization (OTC) are looking for partners to continue developing their technology. For more information on licensing and other opportunities, contact Will Buchanan of OTC at [email protected] and mention track code 2021-WANG-69382.

Sponsored Recommendations

The Digital Thread: End-to-End Data-Driven Manufacturing

May 1, 2024
Creating a Digital Thread by harnessing end-to-end manufacturing data is providing unprecedented opportunities to create efficiencies in the world of manufacturing.

Medical Device Manufacturing and Biocompatible Materials

May 1, 2024
Learn about the critical importance of biocompatible materials in medical device manufacturing, emphasizing the stringent regulations and complex considerations involved in ensuring...

VICIS Case Study

May 1, 2024
The team at VICIS turned to SyBridge and Carbon in order to design and manufacture protective helmet pads, leveraging the digitization and customization expertise of Toolkit3D...

What's Next for Additive Manufacturing?

May 1, 2024
From larger, faster 3D printers to more sustainable materials, discover several of the top additive manufacturing trends for 2023 and beyond.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!