Image

3D Printed Inverter Could Kickstart Electric Cars

Oct. 31, 2014
Engineers at Oak Ridge National Laboratory have combined 3D printing and a wide-bandgap version of silicon carbide to come up with a lightweight, compact 30-kW traction-drive inverter.

Engineers at Oak Ridge National Laboratory have combined 3D printing and a wide-bandgap version of silicon carbide to come up with a lightweight, compact 30-kW traction-drive inverter. It converts dc to ac power with nearly 99% efficiency. The liquid-cooled inverter prototype could lead to lighter, more powerful battery-powered vehicles.

Half of the inverter’s parts were made using 3D printing, a construction technique that allows experimentation with a variety of complex shapes for components. For example, by quickly producing and testing several different heat sinks, the team was able to improve heat transfer throughout the device. It also let them place lower-temperature components close to higher-temperature ones to reduce electrical losses and shrink the overall size of the inverter.

The wide-bandgap silicon makes the inverter more efficient at wider range of temperatures than conventional semiconductor materials. The material also lets the inverter be more reliable, lighter, more compact, and have a high power density.

Another key to the project’s success was using several relatively small, lower-cost capacitors hooked up in parallels to reduce heating compared to the conventional approach of using fewer, larger, and more expensive “brick-type” capacitors.

The team is working on a second iteration of the inverter, one that will use even a higher percentage of 3D printed parts and have roughly four times the power density of the current prototype.

Sponsored Recommendations

Customizations to Get Standard Motors to Mars

Jan. 10, 2025
Clearly, the Martian environment can be harsh and unaccommodating to systems made to operate on Earth. Through a combination of standard industrial motors and creative collaboration...

No Access for Bacteria: An Inside Look at Maxon's Cleanroom

Jan. 10, 2025
Tiny drive systems for use in the human body have to be built in a clean environment, free of microbiological contamination. Welcome to the GMP cleanroom of maxon, where discipline...

High-Efficiency, Precision Drive Systems for Every Robot

Jan. 10, 2025
Robots assemble devices, explore space, and perform surgeries. To achieve human-like motion and accuracy they need powerful and highly precise drives. Learn about custom-made ...

The Importance of Motors in Transportation

Jan. 10, 2025
As we progress toward more efficient and automated systems, the need for robust and reliable motors in the transportation industry has become more critical than ever. Explore ...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!