Image

Cellulose nanocrystals from plant life could lead to stronger materials

March 13, 2014
Material engineers at Purdue University are developing methods to use the nanocrystals that naturally give cellulose in trees and plants strength, lightweight, and resilience to strengthen construction materials and automotive components. Researchers modeled the nanocrystal’s atomic structure and calculated it to have a stiffness of 206 gigapascals, comparable to that of steel. The crystals measure 3 × 5 nm, making them too small to study using light microscopes.

Material engineers at Purdue University are developing methods to use the nanocrystals that naturally give cellulose in trees and plants strength, lightweight, and resilience to strengthen construction materials and automotive components. Researchers modeled the nanocrystal’s atomic structure and calculated it to have a stiffness of 206 gigapascals, comparable to that of steel. The crystals measure 3 × 5 nm, making them too small to study using light microscopes.

This illustration shows the structural details of cellulose nanocrystals.

Researchers say that these cellulose nanocrystals could become the green alternative to carbon nanotubes for reinforcing materials such as polymers and concrete. The crystals could also be used in biodegradable plastics, textiles, wound dressings, and a host of other products. The crystals could be developed from cellulose sources such as trees, plants, algae, oceangoing organisms (tunicates), and bacteria. The advantages of the cellulose material are that it is renewable, biodegradable, and carbon neutral.

Developing and processing the new materials would also be a natural outgrowth of the paper and biofuels industry, so there are already well-established technologies. For example, by-products from the paper industry are currently used to make biofuels. By adding another process, the leftovers could be turned into composite materials.

Sponsored Recommendations

March 31, 2025
Unlike passive products - made of simple carbon springs - the bionic prostheses developed by Revival Bionics are propulsive, equipped with a motor and an artificial Achilles tendon...
March 31, 2025
Electric drives are a key technology for the performance of machines, robots, and power tools. Download this guide for an introduction to high-quality mechatronic drive systems...
March 31, 2025
Discover the world of maxon drive technology: motors, gearheads, sensors, controllers, and accessories. Configure your drive system online, including all relevant product and ...
March 31, 2025
Share current page XSun designs and manufactures a drone that is both energy-independent and can make its own decisions, for fully-automated missions. The company needed reliable...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!