Iron-Based Superalloys

Nov. 15, 2002
Iron, nickel, and cobalt-based alloys used primarily for high-temperature applications are known as superalloys.

Iron, nickel, and cobalt-based alloys used primarily for high-temperature applications are known as superalloys. The iron-based grades, which are less expensive than cobalt or nickel-based grades, are of three types: alloys that can be strengthened by a martensitic type of transformation, alloys that are austenitic and are strengthened by a sequence of hot and cold working (usually, forging at 2,000 to 2,100°F followed by finishing at 1,200 to 1,600°F), and austenitic alloys strengthened by precipitation hardening.

Some metallurgists consider the last group only as superalloys, the others being categorized as high-temperature, high-strength alloys. In general, the martensitic types are used at temperatures below 1,000°F; the austenitic types, above 1,000°F.

The AISI 600 series of superalloys consists of six subclasses of iron-based alloys:

  • 601 through 604: Martensitic low-alloy steels.
  • 610 through 613: Martensitic secondary hardening steels.
  • 614 through 619: Martensitic chromium steels.
  • 630 through 635: Semiaustenitic and martensitic precipitation-hardening stainless steels.
  • 650 through 653: Austenitic steels strengthened by hot/cold work.
  • 660 through 665: Austenitic superalloys; all grades except alloy 661 are strengthened by second-phase precipitation.

Iron-based superalloys are characterized by high temperature as well as room-temperature strength and resistance to creep, oxidation, corrosion, and wear. Wear resistance increases with carbon content. Maximum wear resistance is obtained in alloys 611, 612, and 613, which are used in high-temperature aircraft bearings and machinery parts subjected to sliding contact. Oxidation resistance increases with chromium content. The martensitic chromium steels, particularly alloy 616, are used for steam-turbine blades.

The superalloys are available in all conventional mill forms -- billet, bar, sheet, and forgings -- and special shapes are available for most alloys. In general, austenitic alloys are more difficult to machine than martensitic types, which machine best in the annealed condition. Austenitic alloys are usually "gummy" in the solution-treated condition and machine best after being partially aged or fully hardened.

Crack sensitivity makes most of the martensitic steels difficult to weld by conventional methods. These alloys should be annealed or tempered prior to welding; even then, preheating and postheating are recommended. Welding drastically lowers the mechanical properties of alloys that depend on hot/cold work for strength.

All of the martensitic low-alloy steels machine satisfactorily and are readily fabricated by hot working and cold working. The martensitic secondary-hardening and chromium alloys are all hot worked by preheating and hot forging. Austenitic alloys are more difficult to forge than the martensitic grades.

Sponsored Recommendations

How to Build Better Robotics with Integrated Actuators

July 17, 2024
Reese Abouelnasr, a Mechatronics Engineer with Harmonic Drive, answers a few questions about the latest developments in actuators and the design or engineering challenges these...

Crisis averted: How our AI-powered services helped prevent a factory fire

July 10, 2024
Discover how Schneider Electric's services helped a food and beverage manufacturer avoid a factory fire with AI-powered analytics.

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!