Choosing surface finishes for plain bearing shafts

April 23, 1999
It is widely accepted that a universal material for plain bearings does not exist because they are developed for specific applications

It is widely accepted that a universal material for plain bearings does not exist because they are developed for specific applications. As engineers continue developing polymer materials for plain bearings, the choice of shaft material has become increasingly important. Shaft material is critical for proper performance and acceptable wear from bearing systems.

Surprisingly, the most expensive shaft material is not always the best choice. Smoother shafts are typically more expensive than rougher ones. Squeaking (a common problem for plain bearings) indicates stick-slip caused by excessively smooth shafts. Slightly rougher shafts help pull lubricants from self-lubricating plastic bearings. Smooth shafts adhere to plain bearings, which increases friction. The difference between static and dynamic friction also increases, and running characteristics become unstable. The conditions lead to premature wear of both bearings and shafts. Shaft surfaces that are too rough, on the other hand, result in abrasion. This increases friction, but not as much as excessively smooth shafts.

Designers have a choice between friction and life expectancy when choosing shaft surface roughness. When low friction is critical, shafts with average roughness of 32 to 64 rms work, but when long life is required, use shafts with average surface roughness of 20 rms.

This information supplied by igus, inc., Providence, R.I. For more information.

© 2010 Penton Media, Inc.

About the Author

Paul Dvorak

Paul Dvorak - Senior Editor
21 years of service. BS Mechanical Engineering, BS Secondary Education, Cleveland State University. Work experience: Highschool mathematics and physics teacher; design engineer, Primary editor for CAD/CAM technology. He isno longer with Machine Design.

Email: [email protected]

"

Paul Dvorak - Senior Editor
21 years of service. BS Mechanical Engineering, BS Secondary Education, Cleveland State University. Work experience: Highschool mathematics and physics teacher; design engineer, U.S. Air Force. Primary editor for CAD/CAM technology. He isno longer with Machine Design.

Email:=

Sponsored Recommendations

Sept. 16, 2025
From robotic arms to high-speed conveyors, accuracy matters. Discover how encoders transform motor control by turning motion into real-time datadelivering tighter speed control...
Sept. 16, 2025
Keep high-torque gearboxes running efficiently with external lubrication and cooling systems delivered fast. Flexible configurations, sensor-ready monitoring, and stocked options...
Sept. 16, 2025
Now assembled in the U.S., compact P2.e planetary gear units combine maximum torque, thermal efficiency, and flexible configurations for heavy-duty applicationsavailable faster...
Aug. 22, 2025
Discover how to meet growing customer demands for custom products without overextending your engineering team. Learn how scaling your automation strategy can help you win more...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!