Coo Space39s ball bearing on right spins 10 times longer without lubrication than a traditional ball bearing on left

Spinning Ahead on a Lubrication-Free Ball Bearing

May 26, 2015
This new ball bearing design uses a simple trick to eliminate cages.

Ball bearings, in use for over five centuries in a vast array of applications, provide actuation by rolling two surfaces over a layer of encaged spheres. The spheres are free to roll in place within their separate compartments, sliding the two surfaces past one another. The mechanism must be greased to reduce friction in each compartment.

Now, engineers at Coo Space Ltd. in Japan have introduced a new ball-bearing design that does not use cages. The design reduces friction and eliminates the need for lubricants. With this technology, called Autonomous Decentralized Bearings (ADB), the balls roll continuously throughout the entire system without bumping into each other. The ring ball-bearing prototype achieves this by introducing a special hole in the outer race to slightly decelerate each ball before it “catches up” with the ball in front of it.

Watch a video on the cage-less ball bearing design, courtesy of Engineering TV, below:

The design incorporates a symmetric eye-shaped hole in the outer ring, with sharp corners at the beginning and end of the hole. The ball falls deeper into the hole as it widens, and subsequently slows down. It then rolls up out of the hole as it narrows.

The ball reaches its lowest speed at the widest part of the hole. Such deceleration occurs because the sphere is rolling with a smaller circumference along the hole’s edges. This occurrence is similar to a ball that rolls slower between two rungs than it does on a flat surface.  As the ball resurfaces toward the sharp edges of the hole, it speeds up again, roughly to its original speed. Meanwhile, the ball behind it is about to slow down while the other one speeds up, accounting for the spacing between each ball.

The ring-bearing prototype shows that the ADP’s smooth rotation lasts 10 times longer than that of regular, lubricated and compartmentalized ball bearings. A steel plant is currently in the process of adopting the technology.

About the Author

Leah Scully | Associate Content Producer

Leah Scully is a graduate of The College of New Jersey. She has a BS degree in Biomedical Engineering with a mechanical specialization.  Leah is responsible for Machine Design’s news items that cover industry trends, research, and applied science and engineering, along with product galleries. Visit her on Facebook, or view her profile on LinkedIn

Sponsored Recommendations

How to Build Better Robotics with Integrated Actuators

July 17, 2024
Reese Abouelnasr, a Mechatronics Engineer with Harmonic Drive, answers a few questions about the latest developments in actuators and the design or engineering challenges these...

Crisis averted: How our AI-powered services helped prevent a factory fire

July 10, 2024
Discover how Schneider Electric's services helped a food and beverage manufacturer avoid a factory fire with AI-powered analytics.

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!