Machine Design
  • Resources
  • Members
  • Directory
  • Webinars
  • WISE
  • CAD Models
  • Advertise
    • Search
  • 3D Printing & CAD
  • AUTOMATION & IIOT
  • Robotics
  • Motion Systems
  • Materials
  • Video
  • Data Sheets
  • Topics
    Industry Markets3D Printing & CADAutomation & IIoTFastening & JoiningMaterialsMechanical & Motion Systems Medical DesignRobotics
    Resources
    Machine Design ResourcesWISE (Workers in Science & Engineering)Company DirectorySearch Data SheetsContributeDigital Edition ArchivesCSIA Exchange
    Members
    ContentBenefitsSubscribe
    Advertise
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    1. News

    Nuclear fusion heating up at the National Ignition Facility

    Feb. 9, 2006
    Researchers at Lawrence Livermore National Laboratory have successfully tested some of the lasers at the National Ignition Facility (NIF).

     

    The NIF, which is more than 80% complete, is a 10-story building in which 192 laser beams focus on a tiny target inside a 30-ft-diameter aluminumlined chamber. So far, eight beams have been commissioned.

    When fully operational (scheduled for mid-2009), NIF will be used to study and achieve ignition, the production of a brief burst of energy greater than that used in its creation. Ignition, or nuclear fusion, has never happened under controlled conditions in a laboratory setting.

    NIF's first four beams were fired into various-sized goldplated cylinders (hohlraums) only a few millimeters long. The laser beams enter through a single hole at one end of the hohlraum. In future NIF ignition experiments, the deuteriumtritium fuel capsule will reside in a larger hohlraum. All 192 beams will then heat the interior of the hohlraum through holes on both ends, creating X-rays that burn off and implode the capsule to ignition.

    The high-power UV laser beams last 9 nsec at most — a long time by ignition standards. Such sustained pulses are unique to NIF.

    Various diagnostic instruments measure the X-ray spectra and radiation temperatures inside the hohlraum and image X-rays that are energetic enough to exit through the hohlraum wall. Snapshots of the X-rays provide a clear picture of how the plasma evolves inside the hohlraum.

    The NIF findings are important because they confirm that larger hohlraums should develop plasma more slowly, an important factor in controlling proper symmetry of the implosion necessary for ignition.

    Continue Reading

    Markforged Offers its FX10 Industrial 3D Printer for Enhanced Factory Operations

    How a Connected World Requires Product Adaptation and Faster Time-to-Market

    Sponsored Recommendations

    Voice your opinion!

    To join the conversation, and become an exclusive member of Machine Design, create an account today!

    I already have an account

    New

    Future-Proofing Manufacturing with 3D Printing

    5 For Friday: Salary Survey Optimism; A New (and Important) Acronym; and Ways to Unleash the Potential of Design

    Formlabs Introduces Fuse Blast for Automated SLS Post-Processing

    Most Read

    How Much Should a Bolted Joint be Tightened?

    Engineering Potential: What Determines Success?

    AI: Unleashing the Power in Manufacturing

    Sponsored

    Industrial Automation in the Age of Electrification

    ULTIMATE BATTERY CARE

    Industrial Internet Of Things

    Machine Design
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    • About Us
    • Contact Us
    • Advertise
    • Do Not Sell or Share
    • Privacy & Cookie Policy
    • Terms of Service
    © 2023 Endeavor Business Media, LLC. All rights reserved.
    Endeavor Business Media Logo