Supersmall material works at superhigh temperatures

July 8, 2004
Nanoscale materials show promise of being up to 10 times stronger than conventional materials. But these materials lose their attractive properties at high temperatures.

University of Arizona researchers claim a little "doping," or the introduction of a different type of atom, will solve the problem and let hot nanoscale materials retain their size and shape. U of A researchers computer modeled material with copper atoms, then introduced an antimony atom to see the effect. The simulated antimony atom moved through the material to settle at the grain boundary, the place where one layer of copper atoms ends and another begins. Having an atom of a different size from the main material changes the distance between the atoms. This appears to be the key to keeping things together when temperature changes.

Sponsored Recommendations

Aug. 22, 2025
Discover how to meet growing customer demands for custom products without overextending your engineering team. Learn how scaling your automation strategy can help you win more...
Aug. 22, 2025
Join industry leaders to explore how cutting edge digital technologies are transforming factories. Learn how to boost throughput, enhance flexibility, and accelerate your digital...
Aug. 22, 2025
Explore the future of manufacturing. Learn how to leverage the latest digital technologies and strategies to build a more efficient, agile, and resilient digital factory.
Aug. 21, 2025
A look into the latest improvements in motion control through high-performance drives, AI enhancements, and faster communication protocols.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!