Nanoscale technology yields better thermal insulators

April 1, 2004
Researchers at the University of Illinois at Urbana-Champaign created a better thermal insulator by controlling material structure at the nanoscale.
Using a technique called time-domain thermoreflectance, a graduate student measures the thermal conductivity of thin-film nanolaminates.

Researchers at the University of Illinois at Urbana-Champaign created a better thermal insulator by controlling material structure at the nanoscale.

Says David Cahill, a professor of materials science and engineering, "Making nanolaminates of dissimilar materials let us significantly cut thermal conductivity because heat cannot pass efficiently across the material interfaces."

The nanolaminates consist of alternating layers of tungsten and aluminum oxide. Researchers fabricate them using atomic layer deposition and magnetron sputter deposition. "By making the individual layers only a few nanometers thick, we produced a nanolaminate material that had a thermal conductivity three times smaller than a conventional insulator," says Cahill. Heat flow from one material to another is limited at the interface. Atoms vibrating in the lattice carry heat, and some of the lattice vibrations are scattered at the interface and are not transmitted.

The thermal conductivity of the nanolaminates is then measured using a technique called time-domain thermoreflectance.

Researchers measure the temperature of the small samples with a fast, mode-locked laser that produces subpicosecond pulses. Laser output is split into two beams; one that heats the sample, the other measures reflectivity.

The research also revealed some surprising implications for nanomaterials serving as thermal conductors for dissipating heat from electronics. As an example, carbon nanotubes, which are thermally conductive, will not perform well as fillers in composite materials designed to be thermally conductive. "Nanotubes do not couple well thermally to the surrounding material," says Cahill. "As a result, heat transport across the nanotube-matrix interfaces will be very limited."

Sponsored Recommendations

How to Build Better Robotics with Integrated Actuators

July 17, 2024
Reese Abouelnasr, a Mechatronics Engineer with Harmonic Drive, answers a few questions about the latest developments in actuators and the design or engineering challenges these...

Crisis averted: How our AI-powered services helped prevent a factory fire

July 10, 2024
Discover how Schneider Electric's services helped a food and beverage manufacturer avoid a factory fire with AI-powered analytics.

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!