Wireless and secure

July 21, 2005
A secure, wireless ultrawideband (UWB) data-communication network could help monitor U.S. Air Force bases and DOE nuclear facilities as well as control remotely operated weapon systems, say developers at Sandia National Laboratories, Time Domain Corp., Huntsville, Ala., and KoolSpan Inc., North Bethesda, Md.

Wireless and secure

A secure, wireless ultrawideband (UWB) data-communication network could help monitor U.S. Air Force bases and DOE nuclear facilities as well as control remotely operated weapon systems, say developers at Sandia National Laboratories, Time Domain Corp., Huntsville, Ala., and KoolSpan Inc., North Bethesda, Md.

The technology also promises to usher in advanced sensors that fuse UWB communication with UWB radar. Such systems may be deployed in hostile areas to warn tactical forces and forward bases of incoming threats and insurgents. The secure wireless communication method uses the strong 256-bit Advanced Encryption Standard (AES).

UWB, or "impulse radio," needs no carrier frequency, as do other RF-wireless-network or communication technologies. UWB instead transmits a flood of ultrashort microwave pulses (on the order of 100 picosec in duration) that extend over an extremely wide band of energy covering several gigahertz.

"By spreading impulse energy over a wide frequency spectrum, the signal power falls near or within the noise floor, making these signals extremely difficult to detect, intercept, or jam and, when combined with AES, virtually impossible to crack," says H. Timothy Cooley, senior scientific engineer at Sandia. The large available spectrum of UWB also accommodates data-intensive advanced sensors.

UWB/AES is IP-network compatible and its "per-packet" rotating 256-bit encryption keys further boosts crypto-protection. The UWB/AES network architecture needs no computing infrastructure, provides real-time (hardware) encryption, and is completely self-recovering should it be interrupted or when a sensor goes down.

Recent tests of a wireless UWB network bridge show it capable of real-time 256-bit AES encryption of livestreaming video images generated from a surveillance camera or thermal imager. The tests used only microwatts of transmitted power, about 1/1,000th the power of conventional wireless IEEE 802.11b or Wi-Fi transmissions. Funding for the project comes from the U.S. Air Force Electronic Systems Center.

MAKE CONTACT:

KoolSpan Inc.
www.koolspan.com
Time Domain Corp.
www.timedomain.com

Sponsored Recommendations

Sept. 16, 2025
From robotic arms to high-speed conveyors, accuracy matters. Discover how encoders transform motor control by turning motion into real-time datadelivering tighter speed control...
Sept. 16, 2025
Keep high-torque gearboxes running efficiently with external lubrication and cooling systems delivered fast. Flexible configurations, sensor-ready monitoring, and stocked options...
Sept. 16, 2025
Now assembled in the U.S., compact P2.e planetary gear units combine maximum torque, thermal efficiency, and flexible configurations for heavy-duty applicationsavailable faster...
Aug. 22, 2025
Discover how to meet growing customer demands for custom products without overextending your engineering team. Learn how scaling your automation strategy can help you win more...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!