New developments on the turbine-power front

May 25, 2006
Alternative energy is in the headlines thanks to recent efforts to generate electricity from the tides and wind.

Inventor Doug Selsam's turbine produces power in 9-mph winds and puts out an average 1 kW at 25 mph (24-V nominal).

Marine Current Turbines place two generating units on an arm that can rise out of the water for service.

Marine Current Turbines Ltd., England, develops turbines that work much like submerged windmills. They can sit in the sea where tidal currents are strong. The submerged turbines can each put out 750 to 1,500 kW depending on the local flow pattern and peak velocity. A company goal is to deploy them in arrays or farms.

MCT turbines consist of twin axial-flow rotors of 15 to 20-m diameter, each driving a generator. The twin power units mount on winglike extensions either side of a 3-m tubular tower set into the seabed. Turbines and power units can be hoisted up above sea level for maintenance. This eliminates underwater work by divers or remotely operated vehicles.

The design's environmental impact is considered negligible. The rotors turn slowly, 10 to 20 rpm, and stay in one place, so marine creatures can easily avoid them.

A 10-MW tidal farm under consideration will supply energy to about 5,500 homes. Commercially available units are scheduled for next year.

In another development, inventor Douglas Selsam has introduced a two-rotor, 7-ft-diameter wind generator that produces up to 1 kW. Selsam says the second rotor on his Superturbine ST 1.2 will exceed the output of other 7-ft-diameter turbines, even when his sits on a shorter tower, a distinct advantage in locales with height restrictions. "It's good practice to get a turbine as high as possible, but a tall tower may not be an option," says Selsam. "The extra rotor is more effective than doubling tower height in most locations and uses less material."

The design puts both rotors on the same shaft and then tilts it a bit so they both catch fresh wind. The result is power output equaling that of a 14-ft-diameter turbine, says Selsam. Unidirectional carbon-fiber blades operate quietly and efficiently at all speeds, he adds. Electrical power comes from a three-phase alternator using rare-earth supermagnets to produce 100 A at 12, 24, or 48 V. Side furling and a shock absorber lets the blades turn out of high wind for overspeed protection over 30 mph.

Marine Current Turbines,
Superturbine Inc.,

Sponsored Recommendations

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.


May 15, 2024
Production equipment is expensive and needs to be protected against input abnormalities such as voltage, current, frequency, and phase to stay online and in operation for the ...

Solenoid Valve Mechanics: Understanding Force Balance Equations

May 13, 2024
When evaluating a solenoid valve for a particular application, it is important to ensure that the valve can both remain in state and transition between its de-energized and fully...

Solenoid Valve Basics: What They Are, What They Do, and How They Work

May 13, 2024
A solenoid valve is an electromechanical device used to control the flow of a liquid or gas. It is comprised of two features: a solenoid and a valve. The solenoid is an electric...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!