Better light through X-rays

July 7, 2005
An X-ray technique developed by physicists at the National Institute of Standards and Technology (NIST) sheds more light on temperature distribution in high-intensity gas-discharge (HID) lamps.

Scientists transform X-ray intensity data (left, a montage of five separate images) into an image of the spatial distribution of mercury atoms in a high-intensity discharge lamp (right). Blue indicates the lowest density of atoms, red the highest.


In the NIST technique, an HID lamp sits in an intense beam of X-rays. The X-rays penetrate the lamp's ceramic housing but are partially absorbed by mercury gas in the lamp, casting a shadow in the beam. A special digital camera behind the lamp captures a high-resolution, 2D image of this X-ray shadow showing the density of mercury atoms in the discharge. From the mercury distribution, researchers can determine the temperature distribution in the lamp. The technique has been used to quantify processes that consume power without producing light. Research indicates this method could be practical in industrial laboratories using small-scale X-ray sources.

HID lamps produce 26% of the nation's light output but consume only 17% of the electricity used for lighting. Better efficiency could save lots of money: HID lamps consume roughly 4% of U.S. electricity, equal to about $10 billion annually.

The highly efficient lamps have two electrodes in a ceramic tube that contains small amounts of mercury and metal-halide salts. An electric current between the electrodes heats the lamp, vaporizing the mercury and metal-halide salts, and producing a gas of electrically charged particles, or plasma. Metal atoms, excited by collisions with electrons in the plasma, emit light at many different wavelengths, producing a bright white light.

Sponsored Recommendations

Drive systems for urban air mobility

March 18, 2025
The shift of some of our transport traffic from the road to the air through urban air mobility is one of the most exciting future fields in the aerospace industry.

Blazing the trail for flying robots

March 18, 2025
Eight Bachelor students built a flying manipulator that can hover in any orientation and grasp objects. The drone is even more maneuverable than a quadrocopter and was designed...

Reachy 2: The Open-Source Humanoid Robot Redefining Human-Machine Interaction

March 18, 2025
Reachy 2 was designed to adapt to a wide variety of uses thanks to its modular architecture.

maxon IDX: The plug-and-play solution

March 18, 2025
IDX drives combine power with small space requirements - a brushless BLDC motor combined with an EPOS4 positioning controller and a gearhead inside a high-quality industrial housing...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!