"So far, most nanoelectromechanical systems have been single-unit demonstrations and cannot be manufactured reliably on a large scale," says Colorado University, Boulder researcher, Yung Cheng Lee. To fully integrate nanotechnology into cell phones, automobiles, and defense applications, will take a more fundamental understanding of carbon nanotubes and various nanowires, he says.
To that end, the Darpa Focus Center on Nanoscale Science and Technology for Integrated Micro/Nano-Electromechanical Transducers expects to manage more than 20 cutting-edge projects conducted by Lee and other researchers from CUBoulder, the National Institute of Standards and Technology, Northwestern University, and Columbia University.
Nanotubes and nanowires are the building blocks of nanoelectromechanical systems and have shown superior performance on a scale 1/100 th that of microelectromechanical systems. For example, a prototype nanotube-equipped pressure sensor is 10 more sensitive and one-tenth the size of a conventional unit. The device also consumes one-tenth the power and shows a hundredfold improvement in temperature stability.
Funding for the Center comes from Darpa, with matching support from CU-Boulder and the National Institute of Standards and Technology. GE, Ibiden USA, Lockheed Martin, Raytheon, and WiSpry have signed on as industrial sponsors. Other companies will be invited to join later.