Fuel cells may power medical implants

May 8, 2003

Microfluidic fuel cells developed by researchers at Brown University may make it practical to devise long-running medical devices, such as implants that monitor glucose levels in diabetics. The Brown fuel cells don't require an ion-conducting membrane or selective catalysts at the electrodes to separate fuel-containing fluids. Instead, the cells exploit the fact that fluids do not mix under certain conditions. "We take advantage of how fuels flow in small channels: They don't mix, which means we can keep fuels separated without a membrane," says Tayhas Palmore, Brown associate professor of engineering, biology, and medicine.

These cells work in tandem to provide power under pulsating conditions that mimic blood flow in the body. Until now, fuel-cell makers have fallen short in their efforts to produce a membraneless device that didn't short circuit under pulsed flow. One of the microfluidic cells features a branched channel, which encloses six electrodes. This cell is suitable for generating electrical power under conditions of pulsed flow, according to Palmore. "The design of the device makes possible the delivery of power to a chip as a result of changes in the concentration of a fuel, such as glucose," he says. "This power feedback is a necessary component in an imbedded sensor for diabetes."

Sponsored Recommendations

How BASF turns data into savings

May 7, 2024
BASF continuously monitors the health of 63 substation assets — with Schneider’s Service Bureau and EcoStruxure™ Asset Advisor. ►Learn More: https://www.schn...

Agile design thinking: A key to operation-level digital transformation acceleration

May 7, 2024
Digital transformation, aided by agile design thinking, can reduce obstacles to change. Learn about 3 steps that can guide success.

Can new digital medium voltage circuit breakers help facilities reduce their carbon footprint?

May 7, 2024
Find out how facility managers can easily monitor energy usage to create a sustainable, decarbonized environment using digital MV circuit breakers.

The Digital Thread: End-to-End Data-Driven Manufacturing

May 1, 2024
Creating a Digital Thread by harnessing end-to-end manufacturing data is providing unprecedented opportunities to create efficiencies in the world of manufacturing.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!