Machine Design
  • Resources
  • Members
  • Directory
  • Webinars
  • WISE
  • CAD Models
  • Advertise
    • Search
  • 3D Printing & CAD
  • AUTOMATION & IIOT
  • Robotics
  • Motion Systems
  • Materials
  • Video
  • Data Sheets
  • Topics
    Industry Markets3D Printing & CADAutomation & IIoTFastening & JoiningMaterialsMechanical & Motion Systems Medical DesignRobotics
    Resources
    Machine Design ResourcesWISE (Workers in Science & Engineering)Company DirectorySearch Data SheetsContributeDigital Edition ArchivesCSIA Exchange
    Members
    ContentBenefitsSubscribe
    Advertise
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    1. News

    Aluminum alloy releases hydrogen from water

    July 12, 2007
    A Purdue University engineer has developed a method that uses an aluminum alloy to extract hydrogen from water for running fuel cells or internal combustion engines.

    The method eliminates the need to store or transport hydrogen — two major hurdles on the road to a hydrogen economy, says Jerry Woodall, professor of electrical and computer engineering at Purdue and inventor of the process.

    "Hydrogen is generated on demand, so you only produce as much as you need, when you need it," says Woodall. The technology could drive small internal combustion engines in portable emergency generators, lawn mowers, and chain saws. In theory, however, the process could totally replace gasoline in cars and trucks, he says.

    Hydrogen is generated when water is added to pellets of aluminum alloyed with gallium. The aluminum reacts because it has a strong attraction to oxygen in the water. The reaction splits the oxygen and hydrogen, releasing hydrogen in the process.

    Gallium is critical because it prevents the skin that normally forms on the aluminum's surface after oxidation. Without the skin, the reaction continues until the aluminum is used up.

    Jerry Woodall, center, and doctoral students Charles Allen (holding the test tube) and Jeffrey Ziebarth demonstrate their method for producing hydrogen by adding water to an alloy of aluminum and gallium.

    Sponsored Recommendations

    Smart Factory Solutions that Connect and Protect from Amphenol RF

    Nov. 28, 2023

    Stay Connected and In Control of Your Future Factories with Littelfuse

    Nov. 28, 2023

    Turn to NKK Switches for the Widest Range of Industrial-Savvy Electromechanical Switches

    Nov. 28, 2023

    Unlocking Operational Flexibility in Manufacturing with Industria IoT

    Nov. 28, 2023

    Voice your opinion!

    To join the conversation, and become an exclusive member of Machine Design, create an account today!

    I already have an account

    New

    Technology For Optimizing Sliding Door Mechanics: Precision-Machined Hybrid Polymer Roller

    Track Rollers Reimagined: Durability Meets Innovation

    Engineer’s Guide: Unforeseen Benefits of Polymer-Hybrid Cam Followers

    Most Read

    Universal Robots Unveils UR30: Relief for Heavy Lifting

    Brushed vs Brushless Motors: Which is Best for your Application?

    How Much Should a Bolted Joint be Tightened?

    Machine Design
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    • About Us
    • Contact Us
    • Advertise
    • Do Not Sell or Share
    • Privacy & Cookie Policy
    • Terms of Service
    © 2023 Endeavor Business Media, LLC. All rights reserved.
    Endeavor Business Media Logo