Race team gets ahead with reverse engineering

Aug. 21, 2003
The Auto Research Center (ARC-M), a wind-tunnel testing facility in Mooresville, N.C., has slashed the time needed to reverse engineer models by using HighRES CAD/CAM Reverse Engineering software.

An engineer with Auto Research Center digitizes points on an exhaust header using a portable CMM from Faro Corp.

 

An exhaust header has been painstakingly built for one bank on a V8 engine. Black lines show where to take points for building a model in CAD software.

 

HighRES software shows points in Pro/E collected from the header and partially constructed surfaces. A complete model makes it easier to test designs as well as build models for the opposite bank of cylinders.

The Auto Research Center (ARC-M), a wind-tunnel testing facility in Mooresville, N.C., has slashed the time needed to reverse engineer models by using HighRES CAD/CAM Reverse Engineering software. The program, from HighRES Inc., La Jolla, Calif. (www.reverse-it.com), also reduced the number of errors that crop up in file translations. The Center captures points on parts using a portable CMM from Faro Corp., Lake Mary, Fla., (www.faro.com). In the past, the Research Center's engineers had difficulty digitizing and creating complex surface geometry.

HighRES helps by putting CMM functions into Pro/E that let users modify points and surfaces as easily as if they were created in the CAD program. The reverse-engineering software also works faster than previous packages. A set of exhaust headers, for instance, took only 3 hr to reverse engineer. Without the software, engineers estimate it could have taken three days.

The reverse-engineering software also identifies centerlines on near half-scale models for wind-tunnel tests. It's important in these tests that the body shell is properly positioned on a center spine. Otherwise, the tests produce useless data or worse, lead designers in the wrong direction.

“Race-team engineers also want to know the exact location of critical suspension components for use in kinematics and simulation programs,” says Tom Sweetland, lead design engineer at ARC. “The software and portable CMM gives us precise X, Y, and Z coordinates for those critical points.”

About the Author

Paul Dvorak

Paul Dvorak - Senior Editor
21 years of service. BS Mechanical Engineering, BS Secondary Education, Cleveland State University. Work experience: Highschool mathematics and physics teacher; design engineer, Primary editor for CAD/CAM technology. He isno longer with Machine Design.

Email: [email protected]

"

Paul Dvorak - Senior Editor
21 years of service. BS Mechanical Engineering, BS Secondary Education, Cleveland State University. Work experience: Highschool mathematics and physics teacher; design engineer, U.S. Air Force. Primary editor for CAD/CAM technology. He isno longer with Machine Design.

Email:=

Sponsored Recommendations

March 31, 2025
Unlike passive products - made of simple carbon springs - the bionic prostheses developed by Revival Bionics are propulsive, equipped with a motor and an artificial Achilles tendon...
March 31, 2025
Electric drives are a key technology for the performance of machines, robots, and power tools. Download this guide for an introduction to high-quality mechatronic drive systems...
March 31, 2025
Discover the world of maxon drive technology: motors, gearheads, sensors, controllers, and accessories. Configure your drive system online, including all relevant product and ...
March 31, 2025
Share current page XSun designs and manufactures a drone that is both energy-independent and can make its own decisions, for fully-automated missions. The company needed reliable...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!