Probing the realm of nanomovies

March 23, 2006
Georgia Tech researchers have built a highly sensitive atomicforce-microscopy (AFM) device capable of imaging 100 times faster than conventional AFM equipment.

Georgia Tech Associate Professor Dr. Levent Degertekin compares the size of AFM (larger) and Firat (smaller) probes.


Firat (Force-sensing integrated readout and active tip) lets scientists scan integrated circuits for both mechanical and material defects, and even makes it possible to film fast biological interactions on the molecular scale, tasks not possible with AFM.

Conventional AFM devices scan surfaces with a thin, sharptipped cantilever. Laser light bounced off the cantilever tip measures tip deflection as it moves along the surface and interacts with the material being analyzed. Actuator inertia limits scanning speed. But Firat gets around this limitation by combining the actuator and probe in a structure smaller than the size of a pinhead.

The group connected the Firat probe to a standard AFM controller and produced clear scans of nanoscale features at line speeds to 60 Hz. The system simultaneously imaged the topography as well as elastic and adhesive properties of carbon nanotubes, said to be a first. In fact, Firat can gather information on a material's topography, adhesion, stiffness, elasticity, and viscosity, all in one pass. Funding for the research comes from the National Science Foundation and the National Institutes of Health.

Sponsored Recommendations

How BASF turns data into savings

May 7, 2024
BASF continuously monitors the health of 63 substation assets — with Schneider’s Service Bureau and EcoStruxure™ Asset Advisor. ►Learn More: https://www.schn...

Agile design thinking: A key to operation-level digital transformation acceleration

May 7, 2024
Digital transformation, aided by agile design thinking, can reduce obstacles to change. Learn about 3 steps that can guide success.

Can new digital medium voltage circuit breakers help facilities reduce their carbon footprint?

May 7, 2024
Find out how facility managers can easily monitor energy usage to create a sustainable, decarbonized environment using digital MV circuit breakers.

The Digital Thread: End-to-End Data-Driven Manufacturing

May 1, 2024
Creating a Digital Thread by harnessing end-to-end manufacturing data is providing unprecedented opportunities to create efficiencies in the world of manufacturing.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!