Simulation unlocks the mysteries of crack formation

March 29, 2010
Research physicists have developed large-scale computer simulations to analyze how cracks form and grow in materials including steel, glass, nanostructures, and human bone.

Crack-propagation analysis has been going on for several years now. In the latest iteration, research physicists at Northeastern Univ. in Boston have developed large-scale computer simulations to analyze how cracks form and grow in materials including steel, glass, nanostructures, and human bone. “The simulations help us understand what path cracks follow as they propagate in a stressed material,” says team lead Alain Karma, director of Northeastern’s Center for Interdisciplinary Research on Complex Systems. “This knowledge is useful in the development of new materials for aircraft turbine blades, microelectronic circuits, and artificial bone that can better-withstand the formation of cracks.”

The researchers began by examining the combined effects of two types of stress on crack propagation: shearing and tension. Shearing forces cause two contacting layers to slide upon each other, in opposite directions parallel to the plane of their contact. Shearing happens when material is twisted out of shape. The combination of shearing and tension causes the beginning of a crack. But the mechanism for how a crack develops and spreads has remained elusive until it could be analyzed via powerful computers. Large-scale computer simulations showed the surprising result that shearing and tension cause cracks to take the shape of a helix. Based on the results, the researchers developed a theoretical equation to predict how the helix would rotate, expand, and multiply in different materials.

The research could lead to the production of lighter automobile and aircraft parts, and composite artificial bones that don’t fracture when inside the body. The results are also providing insight into the evolution of geologic faults and fractures in the earth’s crust.

Resources
Center for Interdisciplinary Research on Complex Systems, Northeastern Univ., www.circs.neu.edu

© 2010 Penton Media, Inc.

About the Author

Leslie Gordon

Leslie serves as Senior Editor - 5 years of service. M.S. Information Architecture and Knowledge Management, Kent State University. BA English, Cleveland State University.

Work Experience: Automation Operator, TRW Inc.; Associate Editor, American Machinist. Primary editor for CAD/CAM technology.

Sponsored Recommendations

Flexible Power and Energy Systems for the Evolving Factory

Aug. 29, 2024
Exploring industrial drives, power supplies, and energy solutions to reduce peak power usage and installation costs, & to promote overall system efficiency

Timber Recanting with SEW-EURODRIVE!

Aug. 29, 2024
SEW-EURODRIVE's VFDs and gearmotors enhance timber resawing by delivering precise, efficient cuts while reducing equipment stress. Upgrade your sawmill to improve safety, yield...

Advancing Automation with Linear Motors and Electric Cylinders

Aug. 28, 2024
With SEW‑EURODRIVE, you get first-class linear motors for applications that require direct translational movement.

Gear Up for the Toughest Jobs!

Aug. 28, 2024
Check out SEW-EURODRIVEs heavy-duty gear units, built to power through mining, cement, and steel challenges with ease!

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!