Manufacturing costs keep composites out of cars, despite the weight savings

May 4, 2011
The primary factor that will drive the automotive sector to adopt composite materials will be lower costs, not weight savings that increase mileage, according to a recent report from Lux Research Inc., Boston

Resources:
LUX Research Inc.

The primary factor that will drive the automotive sector to adopt composite materials will be lower costs, not weight savings that increase mileage, according to a recent report from Lux Research Inc., Boston.

Chasing cars: Can composites catch up to steel? analyzes surveys from automakers and composite-material suppliers. It explores what would impede or advance the adoption of new materials, examines composites’ potential to replace metals in cars, and identifies early-stage technologies that could change how composites perform.

“The conventional wisdom that says automakers will adopt composites solely for weight reduction misses the mark,” says lead author David Hwang. “In reality, composites will be used when they help cut manufacturing costs, such as in low-volume production and electric vehicles.”

The report notes that automakers can also boost efficiency less expensively by improving powertrains. For instance, adding turbochargers or switching to a gas/electric hybrid improves fuel efficiency by up to 50%. Automakers can adopt these changes without significantly altering production methods and supply chains, comso these changes cost less than switching to composites.

And while composites are usually touted as having higher strength-to-weight ratios than steel, automakers can get similar weight savings by switching from standard steels to other metals. Aluminum, for example, is lighter than steel and replaces it in many auto parts. And ultrahigh-strength steels can support as much or more than standard steel.

However, these factors don’t mean there’s no future for composites in automotive manufacturing. At low-production volumes, it can be cheaper if several steel parts are consolidated into a single, complex, nonstructural or semistructural composite part that couldn’t be made from metal.

Composites in the form of sheet-molding compound — mats of random fibers impregnated with resin that easily form to contours — can work at higher production rates in applications such as body panels.

Advanced material technologies that may help composites pull ahead in the future include nanoparticle additives, high-throughput structural-component molding, and bio-based materials, all of which are currently under development.

© 2011 Penton Media, Inc.

About the Author

Jessica Shapiro

Jessica serves as Associate Editor - 3 years service, M.S. Mechanical Engineering, Drexel University.

Work experience: Materials engineer, The Boeing Company; Primary editor for mechanical and fastening & joining.

Sponsored Recommendations

How to Build Better Robotics with Integrated Actuators

July 17, 2024
Reese Abouelnasr, a Mechatronics Engineer with Harmonic Drive, answers a few questions about the latest developments in actuators and the design or engineering challenges these...

Crisis averted: How our AI-powered services helped prevent a factory fire

July 10, 2024
Discover how Schneider Electric's services helped a food and beverage manufacturer avoid a factory fire with AI-powered analytics.

Pumps Push the Boundaries of Low Temperature Technology

June 14, 2024
As an integral part of cryotechnology, KNF pumps facilitate scientific advances in cryostats, allowing them to push temperature boundaries and approach absolute zero.

The entire spectrum of drive technology

June 5, 2024
Read exciting stories about all aspects of maxon drive technology in our magazine.

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!