Machine Design
  • Resources
  • Members
  • Directory
  • Webinars
  • WISE
  • CAD Models
  • Advertise
    • Search
  • 3D Printing & CAD
  • AUTOMATION & IIOT
  • Robotics
  • Motion Systems
  • Materials
  • Video
  • Data Sheets
  • Topics
    Industry Markets3D Printing & CADAutomation & IIoTFastening & JoiningMaterialsMechanical & Motion Systems Medical DesignRobotics
    Resources
    Machine Design ResourcesWISE (Workers in Science & Engineering)Company DirectorySearch Data SheetsContributeDigital Edition ArchivesCSIA Exchange
    Members
    ContentBenefitsSubscribe
    Advertise
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    1. News

    Turning liquids to solids using electric fields: electrocrystallization

    Nov. 3, 2011
    Turning liquids to solids using electric fields: electrocrystallization

    Resources:
    Georgia Institute of Technology

    Physicists at the Georgia Institute of Technology have used computer simulations to show that sufficiently strong electric fields can solidify liquids into crystals at temperatures and pressures under which the material should otherwise remain liquid. The process is termed electrocrystallization, and was first described by Geofrey Taylor in 1964 while studying the effects of lightning on raindrops.

    The simulations used molecular-dynamics software developed at Georgia Tech. It let the scientist examine the behavior of a 10-nm diameter drop of formamide, a material consisting of polar molecules with a dipole moment more than twice as large as that of water. The simulation revealed that an electric field of less than 0.5 V/nm made the spherical drop elongate slightly. When the field approached 0.5 V/nm, the sphere transformed into a needlelike structure with an aspect ratio of 12, with the long dimension oriented along the direction of the field.

    Higher fields brought higher and higher aspect ratios. And when the field was 1.5 V/nm, the simulation showed the droplet solidified into a single formamide crystal. Ramping the field down led to the crystalline needle melting, eventually returning to a spherical shape. Researchers theorize that the transformation to a crystal arose from the molecules arranging themselves into a lattice, which increased the interactions between the positive and negative ends of neighboring molecules’ dipoles. This minimized the free energy in the droplet and caused solidification.

    Further research will uncover more about the microscopic origin of material behavior and could lead to field-controlled drug delivery, printing of nanostructures, and aerosols.

    © 2011 Penton Media, Inc.

    Continue Reading

    The Future of Connected Worker Technology and Its Impact on Industrial Training

    Big Tech & Big Ideas Permeate Industrial Thinking in 2023

    Sponsored Recommendations

    Smart Factory Solutions that Connect and Protect from Amphenol RF

    Nov. 28, 2023

    Stay Connected and In Control of Your Future Factories with Littelfuse

    Nov. 28, 2023

    Turn to NKK Switches for the Widest Range of Industrial-Savvy Electromechanical Switches

    Nov. 28, 2023

    Unlocking Operational Flexibility in Manufacturing with Industria IoT

    Nov. 28, 2023

    Voice your opinion!

    To join the conversation, and become an exclusive member of Machine Design, create an account today!

    I already have an account

    New

    Deliver Robust Automated Systems Through Servo Maintenance

    How a Connected World Requires Product Adaptation and Faster Time-to-Market

    A Technology Upgrade for Trucking Chicken Lights

    Most Read

    Brushed vs Brushless Motors: Which is Best for your Application?

    How Much Should a Bolted Joint be Tightened?

    Why it’s Time to Replace Hydraulic and Pneumatic Actuators with Electric Cylinders

    Sponsored

    Power Supplies

    42. 6 61 - 0 .2

    Electronic Magnetic Sensors

    Machine Design
    https://www.facebook.com/MachineDesignMagazine/
    https://www.linkedin.com/company/10998894
    https://twitter.com/MachineDesign
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    • About Us
    • Contact Us
    • Advertise
    • Do Not Sell or Share
    • Privacy & Cookie Policy
    • Terms of Service
    © 2023 Endeavor Business Media, LLC. All rights reserved.
    Endeavor Business Media Logo