New chips offer efficiency with accuracy? Not exactly…

Aug. 9, 2012
Prototypes of a new computer chip recently unveiled at the ACM International Conference on Computing Frontiers are 15 times more efficient than equivalent chips made using current production technology, promising major power reductions and extended battery life for portable devices.

Resources:
Rice University

Prototypes of a new computer chip recently unveiled at the ACM International Conference on Computing Frontiers are 15 times more efficient than equivalent chips made using current production technology, promising major power reductions and extended battery life for portable devices. But these efficiency gains didn’t come without a price: the chips make occasional errors.

Though the concept is deceptively simple, a research team with members from Rice University in Houston, Nanyang Technologies University in Singapore, the Center for Electronics and Microtechnology in Switzerland, and the University of California, Berkeley, has been working on the project since 2003. The goal was to get “inexact” chips that use less power by making a few mistakes in calculations. By managing the likelihood of errors and limiting which calculations create errors, researchers found they can cut energy demands while boosting performance.

One approach eliminates rarely used portions of digital circuitry. The first pruned chips were twice as fast, half the size, and only needed half the energy of their more-accurate, intact cousins.

Another approach uses a technique called confined voltage scaling. It takes advantage of processing speed to cut power demands. Tests show inexact chips with an average 0.25% error rate cut energy demands by a factor of 3.5 compared to traditional chips. That factor could rise to 15.

Obviously, high-error rates would not work well in an engineering environment. But processing a photo is another matter. There, small errors are ignored by the human eye. For example, it was found relative errors up to 0.54% were almost indiscernible while rates up to 7.5% still produced discernible images. Initial uses for the pruning technology will most likely be in application-specific processors embedded in hearing aids, cameras, and other electronic devices.

The inexact hardware is also key to a new educational computer tablet called an I-slate. The I-slate is for classrooms in India with no electricity and few teachers. The low-power needs of the pruned chips should let the I-slate run on solar panels similar to those in handheld calculators. The first I-slates are expected to go on sale next year.

© 2012 Penton Media, Inc.

About the Author

Robert Repas

Robert serves as Associate Editor - 6 years of service. B.S. Electrical Engineering, Cleveland State University.

Work experience: 18 years teaching electronics, industrial controls, and instrumentation systems at the Nord Advanced Technologies Center, Lorain County Community College. 5 years designing control systems for industrial and agricultural equipment. Primary editor for electrical and motion control.

Sponsored Recommendations

Flexible Power and Energy Systems for the Evolving Factory

Aug. 29, 2024
Exploring industrial drives, power supplies, and energy solutions to reduce peak power usage and installation costs, & to promote overall system efficiency

Timber Recanting with SEW-EURODRIVE!

Aug. 29, 2024
SEW-EURODRIVE's VFDs and gearmotors enhance timber resawing by delivering precise, efficient cuts while reducing equipment stress. Upgrade your sawmill to improve safety, yield...

Advancing Automation with Linear Motors and Electric Cylinders

Aug. 28, 2024
With SEW‑EURODRIVE, you get first-class linear motors for applications that require direct translational movement.

Gear Up for the Toughest Jobs!

Aug. 28, 2024
Check out SEW-EURODRIVEs heavy-duty gear units, built to power through mining, cement, and steel challenges with ease!

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!