New technology grows synthetic skin quickly

Aug. 5, 2004
Massachusetts Institute of Technology (MIT) researchers developed a new technology that may speed scientists' ability to create specific cell types from human embryonic stem cells (hES).

Human embryonic stem cells are coaxed to differentiate into skin cells on top of two spots of biomaterial. The marker for the skin cells is stained green and cell nuclei are blue.


Scientists already identified a simple method for producing pure populations of epithelial-like cells from hES, which could be used to make synthetic skin. These cells carry the potential to differentiate into specialized cells, but making them do so is not easy. One factor is the material the cells grow on outside the body, which is the focus of the MIT research.

The new technique is fast and lets scientists test hundreds to thousands of different materials simultaneously. The trick is that the process is miniaturized, according to Daniel G. Anderson, research associate in the Dept. of Chemical Engineering. The team developed robotic technology to deposit over 1,700 spots of biomaterial on a glass slide measuring 25 3 75-mm long. Twenty slides, or microarrays, can be made in one day. Exposure to ultraviolet light polymerizes the biomaterials, making each spot rigid and ready for “seeding” with hES or other cells.

Another feature is that the microarrays work with a minimal number of cells, growth factors, and other media. “That's especially important for human embryonic stem cells because the cells are hard to grow, and the media necessary for their growth are expensive,” says Anderson. Also, many of the media related to testing the cells, such as antibodies, are expensive. Scientists used an initial screening to find promising biomaterials for the differentiation of hES into epithelial cells. Additional experiments identified a host of unexpected materials effects that provide new levels of control over hES cell behavior, showing the effects of quick, easy screenings.

Sponsored Recommendations

April 16, 2025
Clean. Compact. Less heat.
April 16, 2025
SEW-EURODRIVE Introduces DR2C motor, IE5 Ultra-Premium Efficiency Motor
March 31, 2025
Unlike passive products - made of simple carbon springs - the bionic prostheses developed by Revival Bionics are propulsive, equipped with a motor and an artificial Achilles tendon...
March 31, 2025
Electric drives are a key technology for the performance of machines, robots, and power tools. Download this guide for an introduction to high-quality mechatronic drive systems...

Voice your opinion!

To join the conversation, and become an exclusive member of Machine Design, create an account today!